Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Non-Protruding Hazard Detection for the Aged Vision-Impaired
    Sridhara Rao, A ; Gubbi, J ; Palaniswami, M ; WONG, E (IEEE, 2016)
    Usage of the traditional white cane by the elderly with vision impairment is inefficient as many are also reliant on ambulatory aids such as wheelchairs and walking frames. The fall occurrence when using ambulatory aids is higher, contributed by non-protruding hazards such as potholes and drop-offs. Currently available technology for blind navigation, predominantly based on proximity sensing, is not designed to detect non protruding hazards. We address this critical need by developing a new optical laser system that combines innovative approaches in optical laser projection, vision-sensing, pattern recognition, and machine learning. Here, we present an overview of the system, including a new feature descriptor termed Histogram of Intersections, and results from our proof-of-concept demonstration.
  • Item
    Thumbnail Image
    A vision-based system to detect potholes and uneven surfaces for assisting blind people
    Sridhara Rao, A ; Gubbi, J ; Palaniswami, M ; Wong, E (IEEE, 2016)
    Vision is one of the most advanced and important sensory input in humans. However, many people have vision problems due to birth defects, uncorrected errors, work nature, accidents, and aging. The white cane and guide dog are the most widely used means of navigation for the vision-impaired. With advancements in technology, electronic devices have been created using different sensors and technologies to help navigate the blind. Electronic Travel AIDS (ETAs) assist in navigating a person by collecting information about the environment and relaying this information in a form that allows a blind or vision-impaired person to understand the nature of the environment. However, there is still a lack of devices to detect potholes and uneven pavements, which inhibits mobility after dark. This pilot study proposes a computer vision based pothole and uneven surface detection approach to assist blind people in meeting their mobility needs. The system includes projecting laser patterns, recording the patterns through a monocular video, analyzing the patterns to extract features and then providing path cues for the blind user. With over 90% accuracy in detecting potholes, the proposed system aims to assist blind people in real-time navigation.