Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 55
  • Item
    No Preview Available
    Multicolor detour phase holograms based on an Al plasmonic color filter.
    Khaleghi, SSM ; Wen, D ; Cadusch, J ; Crozier, KB (Optica Publishing Group, 2023-01-16)
    The remarkable advances in nanofabrication that have occurred over the last decade present opportunities for the realization of new types of holograms. In this work, for the first time to the best of our knowledge, a method for phase multicolor holograms based on nanohole arrays is described. The nanoholes are in an aluminum film that is interposed between the glass substrate and a silicon dioxide layer. The nanoholes serve as color filters for blue, green, and red wavelengths and provide the necessary phase distribution via the detour phase method. Our nanohole arrays are optimized to maximize the transmission efficiency of the red, green, and blue channels and to minimize the cross-talk between them. We design two multicolor holograms based on these filters and simulate their performance. The results show good fidelity to the desired holographic images. The proposed structure has the advantages of being very compact, of requiring only a simple fabrication method with one lithography step, and of employing materials (aluminum and silicon dioxide) that are compatible with standard CMOS technology.
  • Item
    No Preview Available
    Room Temperature Bias-Selectable, Dual-Band Infrared Detectors Based on Lead Sulfide Colloidal Quantum Dots and Black Phosphorus
    Wang, S ; Ashokan, A ; Balendhran, S ; Yan, W ; Johnson, BC ; Peruzzo, A ; Crozier, KB ; Mulvaney, P ; Bullock, J (AMER CHEMICAL SOC, 2023-06-15)
    A single photodetector capable of switching its peak spectral photoresponse between two wavelength bands is highly useful, particularly for the infrared (IR) bands in applications such as remote sensing, object identification, and chemical sensing. Technologies exist for achieving dual-band IR detection with bulk III-V and II-VI materials, but the high cost and complexity as well as the necessity for active cooling associated with some of these technologies preclude their widespread adoption. In this study, we leverage the advantages of low-dimensional materials to demonstrate a bias-selectable dual-band IR detector that operates at room temperature by using lead sulfide colloidal quantum dots and black phosphorus nanosheets. By switching between zero and forward bias, these detectors switch peak photosensitive ranges between the mid- and short-wave IR bands with room temperature detectivities of 5 × 109 and 1.6 × 1011 cm Hz1/2 W-1, respectively. To the best of our knowledge, these are the highest reported room temperature values for low-dimensional material dual-band IR detectors to date. Unlike conventional bias-selectable detectors, which utilize a set of back-to-back photodiodes, we demonstrate that under zero/forward bias conditions the device's operation mode instead changes between a photodiode and a phototransistor, allowing additional functionalities that the conventional structure cannot provide.
  • Item
    No Preview Available
    Flexible Vanadium Dioxide Photodetectors for Visible to Longwave Infrared Detection at Room Temperature ((press release associated article should be online on 21.06.2023))
    Balendhran, S ; Taha, M ; Wang, S ; Yan, W ; Higashitarumizu, N ; Wen, D ; Azar, NS ; Bullock, J ; Mulvaney, P ; Javey, A ; Crozier, KB (WILEY-V C H VERLAG GMBH, 2023-10-13)
    Abstract Flexible optoelectronics is a rapidly growing field, with a wide range of potential applications. From wearable sensors to bendable solar cells, curved displays, and curved focal plane arrays, the possibilities are endless. The criticality of flexible photodetectors for many of these applications is acknowledged, however, devices that are demonstrated thus far are limited in their spectral range. In this study, flexible photodetectors are demonstrated using a VOx nanoparticle ink, with an extremely broad operating wavelength range of 0.4 to 20 µm. This ink is synthesized using a simple and scalable wet‐chemical process. These photodetectors operate at room temperature and exhibit minimal variance in performance even when bent at angles of up to 100 ° at a bend radius of 6.4 mm. In addition, rigorous strain testing of 100 bend and release cycles revealed a photoresponse with a standard deviation of only 0.55%. This combination of mechanical flexibility, wide spectral response, and ease of fabrication makes these devices highly desirable for a wide range of applications, including low‐cost wearable sensors and hyperspectral imaging systems.
  • Item
    No Preview Available
    Mid-infrared spectral reconstruction with dielectric metasurfaces and dictionary learning
    Russell, BJ ; Cadusch, JJ ; Meng, J ; Wen, D ; Crozier, KB (Optica Publishing Group, 2022-05-15)
    Mid-infrared (MIR) spectroscopy has numerous industrial applications and is usually performed with Fourier-transform infrared (FTIR) spectrometers. While these work well for many purposes, there is currently much interest in alternative approaches that are smaller and lighter, i.e., MIR microspectrometers. Here we investigate all-dielectric metasurfaces as spectral filters for MIR microspectrometers. Two metasurface types are studied. For the first, we design, fabricate, and test a metasurface with a narrow and angularly tunable transmission stop band. We use it to reconstruct the transmission spectra of various materials. The second metasurface, investigated theoretically, possesses narrow passband features via symmetry-protected bound states in the continuum.
  • Item
    Thumbnail Image
    Compact Chemical Identifier Based on Plasmonic Metasurface Integrated with Microbolometer Array
    Meng, J ; Weston, L ; Balendhran, S ; Wen, D ; Cadusch, JJ ; Unnithan, RR ; Crozier, KB (WILEY-V C H VERLAG GMBH, 2022-04)
    Abstract The identification of chemicals from their mid‐infrared spectra has applications that include industrial production of chemicals, food production, pharmaceutical manufacturing, and environmental monitoring. This is generally done using laboratory benchtop tools, such as the Fourier transform infrared spectrometer. Although such systems offer high performance, alternative platforms offering reduced size, weight, and cost can enable a host of new applications, e.g. in consumer personal electronics. Here a compact microspectrometer platform for chemical identification, comprising a mid‐infrared metasurface integrated with a lightweight (≈1 g) and very small (≈1 cm3) microbolometer‐based thermal camera is experimentally demonstrated. A machine learning algorithm is trained to analyze the microspectrometer output and classify chemicals based on their mid‐infrared fingerprints. High accuracy identification of four liquid chemicals, concentration quantification of ethyl lactate in cyclohexane down to subpercentage levels, and the classification of food and drug samples is demonstrated.
  • Item
    Thumbnail Image
    Gap-Surface Plasmon-Enhanced Photoluminescence of InSe
    Lee, HY ; Nelson, D ; Yan, W ; Crozier, KB ; Bullock, J ; Kim, S (WILEY-V C H VERLAG GMBH, 2023-05)
    2D materials, with distinct characteristics compared to their conventional bulk counterparts, have been a popular topic in various optoelectronic research fields. Herein, indium selenide (InSe), a monochalcogenide van der Waals layered semiconductor, which has been studied due to its thickness dependent optical characteristics is explored. For InSe to be used as a versatile light source, enhancing the emission of InSe is required. Here, enhanced photoluminescence (PL) from multi‐layer InSe is demonstrated using a gap plasmon induced between Ag nanocube dimer and an Au substrate. Such plasmonic structures support multiple resonances, one of those overlapping with InSe's band edge PL emission. The calculated Purcell factor shows a 200‐fold increase on the short edge of nanocube dimers. Experimentally, PL enhancement of 6‐fold is demonstrated at room temperature. In addition, a method for determining the thickness of 2D materials via dark‐field spectroscopy using white light illumination is shown. This study paves the way for the incorporation of 2D InSe into nanophotonic structures.
  • Item
    Thumbnail Image
    Infrared modulation via near-room-temperature phase transitions of vanadium oxides & core–shell composites
    Taha, M ; Balendhran, S ; Sherrell, PC ; Kirkwood, N ; Wen, D ; Wang, S ; Meng, J ; Bullock, J ; Crozier, KB ; Sciacca, L (Royal Society of Chemistry (RSC), 2023)
    Vanadium oxides (VOx) are highly promising materials for heat retardant coatings, enabled by their insulator-to-metal phase transition (IMT). Currently, this IMT typically occurs at 68 °C, well above room temperature. Here, we develop a dopant-free approach to lower the IMT temperature to ∼40 °C enabling near-room temperature infrared modulation, by simple, solution phase synthesis. This is achieved by both controlling the stoichiometry of the metal oxide and by using a SiO2 shell around the VOx particles, with the difference in thermal expansion coefficient between SiO2 and VOx inducing sufficient strain in the VOx to dramatically lower the IMT temperature. This approach enables the production of a functional solution of suspended VOx nanoparticles with near-room temperature IMT. The combination of near-room temperature IMT and solution phase nanoparticles dramatically increases the ease, scalability, and efficacy of VOx application.
  • Item
    No Preview Available
    Genetic optimization of mid-infrared filters for a machine learning chemical classifier.
    Tan, H ; Cadusch, JJ ; Meng, J ; Crozier, KB (Optica Publishing Group, 2022-05-23)
    Miniaturized mid-infrared spectrometers present opportunities for applications that range from health monitoring to agriculture. One approach combines arrays of spectral filters with infrared photodetectors, called filter-array detector-array (FADA) microspectrometers. A paper recently reported a FADA microspectrometer in tandem with machine learning for chemical identification. In that work, a FADA microspectrometer with 20 filters was assembled and tested. The filters were band-pass, or band-stop designs that evenly spanned the microspectrometer's operating wavelength range. However, given that a machine learning classifier can be trained on an arbitrary filter basis, it is not apparent that evenly spaced filters are optimal. Here, through simulations with noise, we use a genetic algorithm to optimize six bandpass filters to best identify liquid and gaseous chemicals. We report that the classifiers trained with the optimized filter sets outperform those trained with evenly spaced filter sets and those handpicked to target the absorption bands of the chemicals investigated.
  • Item
    Thumbnail Image
    Spectrally Selective Mid-Wave Infrared Detection Using Fabry-Pérot Cavity Enhanced Black Phosphorus 2D Photodiodes.
    Yan, W ; Shresha, VR ; Jeangros, Q ; Azar, NS ; Balendhran, S ; Ballif, C ; Crozier, K ; Bullock, J (American Chemical Society, 2020-10-27)
    Thin two-dimensional (2D) material absorbers have the potential to reduce volume-dependent thermal noise in infrared detectors. However, any reduction in noise must be balanced against lower absorption from the thin layer, which necessitates advanced optical architectures. Such architectures can be particularly effective for applications that require detection only within a specific narrow wavelength range. This study presents a Fabry-Pérot cavity enhanced bP/MoS2 midwave infrared (MWIR) photodiode. This simple structure enables tunable narrow-band (down to 0.42 μm full width at half-maximum) photodetection in the 2-4 μm range by adjusting the thickness of the Fabry-Pérot cavity resonator. This is achieved while maintaining room-temperature performance metrics comparable to previously reported 2D MWIR detectors. Zero bias specific detectivity and responsivity values of up to 1.7 × 109 cm Hz1/2 W-1 and 0.11 A W-1 at λ = 3.0 μm are measured with a response time of less than 3 ns. These results introduce a promising family of 2D detectors with applications in MWIR spectroscopy.
  • Item
    Thumbnail Image
    Visible to Short-Wave Infrared Photodetectors Based on ZrGeTe4 van der Waals Materials
    Yan, W ; Johnson, BC ; Balendhran, S ; Cadusch, J ; Yan, D ; Michel, JI ; Wang, S ; Zheng, T ; Crozier, K ; Bullock, J (AMER CHEMICAL SOC, 2021-09-29)
    The self-terminated, layered structure of van der Waals materials introduces fundamental advantages for infrared (IR) optoelectronic devices. These are mainly associated with the potential for low noise while maintaining high internal quantum efficiency when reducing IR absorber thicknesses. In this study, we introduce a new van der Waals material candidate, zirconium germanium telluride (ZrGeTe4), to a growing family of promising IR van der Waals materials. We find the bulk form ZrGeTe4 has an indirect band edge around ∼0.5 eV, in close agreement with previous theoretical predictions. This material is found to be stable up to 140 °C and shows minimal compositional variation even after >30 days storage in humid air. We demonstrate simple proof-of-concept broad spectrum photodetectors with responsivities above 0.1 AW-1 across both the visible and short-wave infrared wavelengths. This corresponds to a specific detectivity of ∼109 cm Hz1/2 W-1 at λ = 1.4 μm at room temperature. These devices show a linear photoresponse vs illumination intensity relationship over ∼4 orders of magnitude, and fast rise/fall times of ∼50 ns, also verified by a 3 dB roll-off frequency of 5.9 MHz. As the first demonstration of photodetection using ZrGeTe4, these characteristics measured on a simple proof-of-concept device show the exciting potential of the ZrGeTe4 for room temperature IR optoelectronic applications.