Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 43
  • Item
    Thumbnail Image
    Online optimization of spark advance in alternative fueled engines using extremum seeking control
    Mohammadi, A ; Manzie, C ; Nesic, D (Elsevier, 2014-08-01)
    Alternative fueled engines offer greater challenges for engine control courtesy of uncertain fuel composition. This makes optimal tuning of input parameters like spark advance extremely difficult in most existing ECU architectures. This paper proposes the use of grey-box extremum seeking techniques to provide real-time optimization of the spark advance in alternative fueled engines. Since practical implementation of grey-box extremum seeking methods is typically done using digital technology, this paper takes advantage of emulation design methods to port the existing continuous-time grey-box extremum seeking methods to discrete-time frameworks. The ability and flexibility of the proposed discrete-time framework is demonstrated through simulations and in practical situation using a natural gas fueled engine.
  • Item
    Thumbnail Image
    A comparison of open-loop and closed-loop stimulation strategies to control excitation of retinal ganglion cells
    Kameneva, T ; Zarelli, D ; Nesic, D ; Grayden, DB ; Burkitt, AN ; Meffin, H (Elsevier, 2014-11-01)
    Currently, open-loop stimulation strategies are prevalent in medical bionic devices. These strategies involve setting electrical stimulation that does not change in response to neural activity. We investigate through simulation the advantages of using a closed-loop strategy that sets stimulation level based on continuous measurement of the level of neural activity. We propose a model-based controller design to control activation of retinal neurons. To deal with the lack of controllability and observability of the whole system, we use Kalman decomposition and control only the controllable and observable part. We show that the closed-loop controller performs better than the open-loop controller when perturbations are introduced into the system. We envisage that our work will give rise to more investigations of the closed-loop techniques in basic neuroscience research and in clinical applications of medical bionics.
  • Item
    Thumbnail Image
    Lyapunov-Based Small-Gain Theorems for Hybrid Systems
    Liberzon, D ; Nesic, D ; Teel, AR (Institute of Electrical and Electronics Engineers, 2014-06-01)
    Constructions of strong and weak Lyapunov functions are presented for a feedback connection of two hybrid systems satisfying certain Lyapunov stability assumptions and a small-gain condition. The constructed strong Lyapunov functions can be used to conclude input-to-state stability (ISS) of hybrid systems with inputs and global asymptotic stability (GAS) of hybrid systems without inputs. In the absence of inputs, we also construct weak Lyapunov functions nondecreasing along solutions and develop a LaSalle-type theorem providing a set of sufficient conditions under which such functions can be used to conclude GAS. In some situations, we show how average dwell time (ADT) and reverse average dwell time (RADT) “clocks” can be used to construct Lyapunov functions that satisfy the assumptions of our main results. The utility of these results is demonstrated for the “natural” decomposition of a hybrid system as a feedback connection of its continuous and discrete dynamics, and in several design-oriented contexts: networked control systems, event-triggered control, and quantized feedback control.
  • Item
    Thumbnail Image
    Tracking Control for Nonlinear Networked Control Systems
    Postoyan, R ; van de Wouw, N ; Nesic, D ; Heemels, WPMH (Institute of Electrical and Electronics Engineers, 2014-06-01)
    We investigate the tracking control of nonlinear networked control systems (NCS) affected by disturbances. We consider a general scenario in which the network is used to ensure the communication between the controller, the plant and the reference system generating the desired trajectory to be tracked. The communication constraints induce non-vanishing errors (in general) on the feedforward term and the output of the reference system, which affect the convergence of the tracking error. As a consequence, available results on the stabilization of equilibrium points for NCS are not applicable. Therefore, we develop an appropriate hybrid model and we give sufficient conditions on the closed-loop system, the communication protocol and an explicit bound on the maximum allowable transmission interval guaranteeing that the tracking error converges to the origin up to some errors due to both the external disturbances and the aforementioned non-vanishing network-induced errors. The results cover a large class of the so-called uniformly globally asymptotically stable protocols which include the well-known round-robin and try-once-discard protocols. We also introduce a new dynamic protocol suitable for tracking control. Finally, we show that our approach can be used to derive new results for the observer design problem for NCS. It has to be emphasized that the approach is also new for the particular case of sampled-data systems.
  • Item
    Thumbnail Image
    Gronwall inequality for hybrid systems
    Noroozi, N ; Nesic, D ; Teel, AR (PERGAMON-ELSEVIER SCIENCE LTD, 2014-10)
    The Gronwall inequality, a well-known and useful result both for continuous-time and discrete-time signals, is extended to hybrid signals, namely those that combine continuous time and discrete time. An application of the result to establishing a bounded energy bounded state property for hybrid systems with inputs is provided.
  • Item
    Thumbnail Image
    Multi-agent source seeking via discrete-time extremum seeking control
    Khong, SZ ; Tan, Y ; Manzie, C ; Nesic, D (PERGAMON-ELSEVIER SCIENCE LTD, 2014-09)
    Recent developments in extremum seeking theory have established a general framework for the methodology, although the specific implementations, particularly in the context of multi-agent systems, have not been demonstrated. In this work, a group of sensor-enabled vehicles is used in the context of the extremum seeking problem using both local and global optimisation algorithms to locate the extremum of an unknown scalar field distribution. For the former, the extremum seeker exploits estimates of gradients of the field from local dithering sensor measurements collected by the mobile agents. It is assumed that a distributed coordination which ensures uniform asymptotic stability with respect to a prescribed formation of the agents is employed. An inherent advantage of the frameworks is that a broad range of nonlinear programming algorithms can be combined with a wide class of cooperative control laws to perform extreme source seeking. Semi-global practical asymptotically stable convergence to local extrema is established in the presence of field sampling noise. Subsequently, global extremum seeking with multiple agents is investigated and shown to give rise to robust practical convergence whose speed can be improved via computational parallelism. Nonconvex field distributions with local extrema can be accommodated within this global framework.
  • Item
    Thumbnail Image
    Packetized MPC with dynamic scheduling constraints and bounded packet dropouts
    Ljesnjanin, M ; Quevedo, DE ; Nesic, D (PERGAMON-ELSEVIER SCIENCE LTD, 2014-03-01)
    We study a Networked Control System architecture which uses a communication network in the controller-actuator links. The network is affected by packet dropouts and allows access to only one plant input node at each time instant. This limits control performance significantly. To mitigate these limitations we propose a control and network protocol co-design method. Succinctly, the underlying features of the proposed method are as follows: a sequence of predicted optimal control values over a finite horizon, for an optimally chosen input node, is obtained using Model Predictive Control ideas; the entire resulting sequence is sent to the chosen input node; a smart actuator is used to store the predictions received and apply them accordingly. We show that if the number of consecutive packet dropouts is uniformly bounded, then partial nonlinear gain ℓ2 stability and also a more traditional linear gain ℓ2 stability can be ensured via appropriate choice of design parameters and the right assumptions. Whilst our results apply to general nonlinear discrete-time multiple input plants affected by exogenous disturbances, for a disturbance-free case we prove that Global Asymptotic Stability follows from our main result. Moreover, we show that by imposing stronger assumptions, Input-to-State Stability is achievable as well. Finally we demonstrate the potential of the proposed method via simulations.
  • Item
    Thumbnail Image
    Event-triggered transmission for linear control over communication channels
    Forni, F ; Galeani, S ; Nesic, D ; Zaccarian, L (PERGAMON-ELSEVIER SCIENCE LTD, 2014-02-01)
    We consider an exponentially stable closed loop interconnection between a continuous-time linear plant and a continuous-time linear controller, and we study the problem of interconnecting the plant output to the controller input through a digital channel. We propose an event-triggered transmission policy whose goal is to transmit the measured plant output information as little as possible while preserving closed-loop stability. Global asymptotic stability is guaranteed when the plant state is available or when an estimate of the state is available (provided by a classical continuous-time linear observer). Under further assumptions, the transmission policy guarantees global exponential stability of the origin.
  • Item
    Thumbnail Image
    Agent-Based Simulation of Holocene Monsoon Precipitation Patterns and Hunter-Gatherer Population Dynamics in Semi-arid Environments
    Balbo, AL ; Rubio-Campillo, X ; Rondelli, B ; Ramirez, M ; Lancelotti, C ; Torrano, A ; Salpeteur, M ; Lipovetzky, N ; Reyes-Garcia, V ; Montanola, C ; Madella, M (SPRINGER, 2014-06)
  • Item
    Thumbnail Image
    An Efficient Resource Allocation Mechanism for LTE-GEPON Converged Networks
    Ranaweera, C ; Wong, E ; Lim, C ; Nirmalathas, A ; Jayasundara, C (SPRINGER, 2014-07)