Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    No Preview Available
    Stability of Nonlinear Systems with Two Time Scales Over a Single Communication Channel
    Wang, W ; Maass, AI ; Nešić, D ; Tan, Y ; Postoyan, R ; Heemels, WPMH (IEEE, 2023-01-01)
  • Item
    Thumbnail Image
    Extremum seeking control for nonlinear systems on compact Riemannian manifolds
    Taringoo, F ; Nesic, D ; Tan, Y ; DOWER, PM (IEEE Press, 2014)
    This paper formulates the extremum seeking control problem for nonlinear dynamical systems which evolve on Riemannian manifolds and presents stability results for a class of numerical algorithms defined in this context. The results are obtained based upon an extension of extremum seeking algorithms in Euclidean spaces and a generalization of Lyapunov stability theory for dynamical systems defined on Rimannian manifolds. We employ local properties of Lyapunov functions to extend the singular perturbation analysis on Riemannian manifolds. Consequently, the results of the singular perturbation on manifolds are used to obtain the convergence of extremum seeking algorithms for dynamical systems on Riemannian manifolds.
  • Item
    Thumbnail Image
    Coordination of blind agents on Lie groups
    Taringoo, F ; Nesic, D ; DOWER, P ; Tan, Y (IEEE, 2015)
    This paper presents an algorithm for the synchronization of blind agents evolving on a connected Lie group. We employ the method of extremum seeking control for nonlinear dynamical systems defined on connected Riemannian manifolds to achieve the synchronization among the agents. This approach is independent of the underlying graph of the system and each agent updates its position on the connected Lie group by only receiving the synchronization cost function.
  • Item
    Thumbnail Image
    Multi-agent gradient climbing via extremum seeking control
    Kong, SZ ; Manzie, CG ; Tan, Y ; Nesic, D (IFAC - International Federation of Automatic Control, 2014)
    A unified framework based on discrete-time gradient-based extremum seeking control is proposed to localise an extremum of an unknown scalar field distribution using a group of equipped with sensors. The controller utilises estimates of gradients of the field from local dithering sensor measurements collected by the mobile agents. It is assumed that distributed coordination which ensures uniform asymptotic stability with respect to a prescribed formation of the agents is employed. The framework is useful in that a broad range of nonlinear programming algorithms can be combined with a wide class of cooperative control laws to perform extreme source seeking. Semi-global practical asymptotically stable convergence to local extrema is established in the presence of bounded field sampling noise.
  • Item
    Thumbnail Image
    Improving L₂ Gain Performance of Linear Systems by Reset Control
    Zhao, G ; NESIC, D ; Tan, Y ; Wang, J ; Boje, E ; Xia, X (IFAC - International Federation of Automatic Control, 2014)
    In this paper, new Lyapunov-based reset rules are constructed to improve C2 gain performance of linear-time-invariant (LTI) systems. By using the hybrid system framework, sufficient conditions for exponential and finite gain C2 stability are presented. It is shown that the C2 gain of the closed loop system with resets can be improved compared with the base system. Numerical example supports our results.
  • Item
    Thumbnail Image
    Nonlinear Observer Based Control Design for an Under-actuated Compliant Robotic Hand
    Garcia-Rosas, R ; Portella-Delgado, JM ; Tan, Y ; NESIC, D (Engineers Australia, 2016)
    This work aims at designing control algorithms for an under-actuated compliant adaptive prosthetic hand to perform a complex task of grasping and manipulating of an unknown object. As multiple objectives are considered, if one controller is designed for one control objective, a hybrid controller is needed to coordinate different controllers to perform complex tasks. This work thus tries to apply recently developed framework of System of Funnels to the underactuated compliant adaptive prosthetic hand to design this hybrid controller. In order to apply System of Funnels, each controller has to have the flexibility to obtain any given domain of attraction by tuning its parameters. This paper proposed nonlinear observer based PID controllers for Grasp Approach and Grasp Stabilization. The nonlinear observer estimates the needed velocity of the under-actuated compliant adaptive prosthetic hand. By tuning parameters of PID controller and nonlinear observers appropriately, any desired domain of attraction for each control objective can be achieved. Our next step is to design some manipulation controller with adjustable domain of attraction in order to apply the framework of System of Funnels.