Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Corrigendum to "On eigenvalues of Laplacian matrix for a class of directed signed graphs" (vol 523, pg 281, 2017)
    Ahmadizadeh, S ; Shames, I ; Martin, S ; Nesic, D (Elsevier, 2017-10-01)
    This note corrects an error in the results of Subsection 3.1 in authors' paper “On Eigenvalues of Laplacian Matrix for a Class of Directed Signed Graphs”, which appeared in Linear Algebra and its Applications 523 (2017), 281–306.
  • Item
    Thumbnail Image
    On eigenvalues of Laplacian matrix for a class of directed signed graphs
    Ahmadizadeh, S ; Shames, I ; Martin, S ; Nesic, D (ELSEVIER SCIENCE INC, 2017-06-15)
    The eigenvalues of the Laplacian matrix for a class of directed graphs with both positive and negative weights are studied. The Laplacian matrix naturally arises in a wide range of applications involving networks. First, a class of directed signed graphs is studied in which one pair of nodes (either connected or not) is perturbed with negative weights. A necessary and sufficient condition is proposed to attain the following objective for the perturbed graph: the real parts of the non-zero eigenvalues of its Laplacian matrix are positive. Under certain assumption on the unperturbed graph, it is established that the objective is achieved if and only if the magnitudes of the added negative weights are smaller than an easily computable upper bound. This upper bound is shown to depend on the topology of the unperturbed graph. It is also pointed out that the obtained condition can be applied in a recursive manner to deal with multiple edges with negative weights. Secondly, for directed graphs, a subset of pairs of nodes are identified where if any of the pairs is connected by an edge with infinitesimal negative weight, the resulting Laplacian matrix will have at least one eigenvalue with negative real part. Illustrative examples are presented to show the applicability of our results.
  • Item
    Thumbnail Image
    Optimal contract design for effort-averse sensors
    Farokhi, F ; Shames, I ; Cantoni, M (Taylor & Francis, 2018-06-28)
    A central planner wishes to engage a collection of sensors to measure a quantity. Each sensor seeks to trade-off the effort it invests to obtain and report a measurement, against contracted reward. Assuming that measurement quality improves as a sensor increases the effort it invests, the problem of reward contract design is investigated. To this end, a game is formulated between the central planner and the sensors. Using this game, it is established that the central planner can enhance the quality of the estimate by rewarding each sensor based on the distance between the average of the received measurements and the measurement provided by the sensor. Optimal contracts are designed from the perspective of the budget required to achieve a specified level of error performance.
  • Item
    Thumbnail Image
    Security analysis of cyber-physical systems using H-2 norm
    Shames, I ; Farokhi, F ; Summers, TH (INST ENGINEERING TECHNOLOGY-IET, 2017-07-14)
    In this paper, we study the effect of attacks on networked systems and propose a new security index to analyze the impact of such attacks using H2 norms of attacks to target and monitoring outputs. In addition, we pose, and subsequently solve, optimisation problems for selecting inputs or outputs that point to attacks with maximum impact and least detectability. To demonstrate the applicability of the analysis methods proposed in this paper IEEE 9-bus and 50-generator 145- bus systems are considered as test cases.