Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 14
  • Item
    Thumbnail Image
    Active Learning for Linear Parameter-Varying System Identification
    Chin, R ; Maass, AI ; Ulapane, N ; Manzie, C ; Shames, I ; Nešić, D ; Rowe, JE ; Nakada, H ( 2020-05-02)
    Active learning is proposed for selection of the next operating points in the design of experiments, for identifying linear parameter-varying systems. We extend existing approaches found in literature to multiple-input multiple-output systems with a multivariate scheduling parameter. Our approach is based on exploiting the probabilistic features of Gaussian process regression to quantify the overall model uncertainty across locally identified models. This results in a flexible framework which accommodates for various techniques to be applied for estimation of local linear models and their corresponding uncertainty. We perform active learning in application to the identification of a diesel engine air-path model, and demonstrate that measures of model uncertainty can be successfully reduced using the proposed framework.
  • Item
    Thumbnail Image
    Tracking and regret bounds for online zeroth-order Euclidean and Riemannian optimisation
    Maass, AI ; Manzie, C ; Nesic, D ; Manton, JH ; Shames, I ( 2020-10-01)
    We study numerical optimisation algorithms that use zeroth-order information to minimise time-varying geodesically-convex cost functions on Riemannian manifolds. In the Euclidean setting, zeroth-order algorithms have received a lot of attention in both the time-varying and time-invariant cases. However, the extension to Riemannian manifolds is much less developed. We focus on Hadamard manifolds, which are a special class of Riemannian manifolds with global nonpositive curvature that offer convenient grounds for the generalisation of convexity notions. Specifically, we derive bounds on the expected instantaneous tracking error, and we provide algorithm parameter values that minimise the algorithm’s performance. Our results illustrate how the manifold geometry in terms of the sectional curvature affects these bounds. Additionally, we provide dynamic regret bounds for this online optimisation setting. To the best of our knowledge, these are the first regret bounds even for the Euclidean version of the problem. Lastly, via numerical simulations, we demonstrate the applicability of our algorithm on an online Karcher mean problem.
  • Item
    Thumbnail Image
    Observing the Slow States of General Singularly Perturbed Systems
    Deghat, M ; Nesic, D ; Teel, AR ; Manzie, C (IEEE, 2020)
    This paper studies the behaviour of observers for the slow states of a general singularly perturbed system - that is a singularly perturbed system which has boundary-layer solutions that do not necessarily converge to a slow manifold. The solutions of the boundary-layer system are allowed to exhibit persistent (e.g. oscillatory) steady-state behaviour which are averaged to obtain the dynamics of the approximate slow system. It is shown that if an observer has certain properties such as asymptotic stability of its error dynamics on average, then it is practically asymptotically stable for the original singularly perturbed system.
  • Item
    Thumbnail Image
    Adaptive Scan for Atomic Force Microscopy Based on Online Optimization: Theory and Experiment
    Wang, K ; Ruppert, MG ; Manzie, C ; Nesic, D ; Yong, YK (Institute of Electrical and Electronics Engineers, 2020-05-01)
    A major challenge in atomic force microscopy is to reduce the scan duration while retaining the image quality. Conventionally, the scan rate is restricted to a sufficiently small value in order to ensure a desirable image quality as well as a safe tip-sample contact force. This usually results in a conservative scan rate for samples that have a large variation in aspect ratio and/or for scan patterns that have a varying linear velocity. In this paper, an adaptive scan scheme is proposed to alleviate this problem. A scan line-based performance metric balancing both imaging speed and accuracy is proposed, and the scan rate is adapted such that the metric is optimized online in the presence of aspect ratio and/or linear velocity variations. The online optimization is achieved using an extremum-seeking approach, and a semiglobal practical asymptotic stability result is shown for the overall system. Finally, the proposed scheme is demonstrated via both simulation and experiment.
  • Item
    Thumbnail Image
    Practical exponential stability and closeness of solutions for singularly perturbed systems via averaging
    Deghat, M ; Ahmadizadeh, S ; Nesic, D ; Manzie, C (PERGAMON-ELSEVIER SCIENCE LTD, 2021-04)
    This paper studies the behavior of singularly perturbed nonlinear differential equations with boundary-layer solutions that do not necessarily converge to an equilibrium. Using the average for the derivative of the slow state variables and assuming the boundary-layer solutions converge exponentially fast to a bounded set, which is possibly parameterized by the slow variable, results on the closeness of solutions of the singularly perturbed system to the solutions of the reduced average and boundary-layer systems over a finite time interval are presented. The closeness of solution error is shown to be of order O(ε) where ε is the perturbation parameter. Moreover, under the additional assumption of exponential stability of the reduced average system, practical exponential stability of the solutions of the singularly perturbed system is provided.
  • Item
    Thumbnail Image
    Scan Rate Adaptation for AFM Imaging Based on Performance Metric Optimization
    Wang, K ; Ruppert, MG ; Manzie, C ; Nesic, D ; Yong, YK (Institute of Electrical and Electronics Engineers (IEEE), 2020-02)
    Constant-force contact-mode atomic force microscopy (AFM) relies on a feedback control system to regulate the tip–sample interaction during imaging. Due to limitations in actuators and control, the bandwidth of the regulation system is typically small. Therefore, the scan rate is usually limited in order to guarantee a desirable image quality for a constant-rate scan. By adapting the scan rate online, further performance improvement is possible, and the conditions to this improvement have been explored qualitatively in a previous study for a wide class of possible scan patterns. In this article, a quantitative assessment of the previously proposed adaptive scan scheme is investigated through experiments that explore the impact of various degrees of freedom in the algorithm. Further modifications to the existing scheme are proposed and shown to improve the closed-loop performance. The flexibility of the proposed approach is further demonstrated by applying the algorithm to tapping-mode AFM.
  • Item
    Thumbnail Image
    A Sequential Learning Algorithm for Probabilistically Robust Controller Tuning
    Chin, R ; Manzie, C ; Shames, I ; Nešić, D ; Rowe, JE ( 2021-02-18)
    We introduce a sequential learning algorithm to address a robust controller tuning problem, which in effect, finds (with high probability) a candidate solution satisfying the internal performance constraint to a chance-constrained program which has black-box functions. The algorithm leverages ideas from the areas of randomised algorithms and ordinal optimisation, and also draws comparisons with the scenario approach; these have all been previously applied to finding approximate solutions for difficult design problems. By exploiting statistical correlations through black-box sampling, we formally prove that our algorithm yields a controller meeting the prescribed probabilistic performance specification. Additionally, we characterise the computational requirement of the algorithm with a probabilistic lower bound on the algorithm's stopping time. To validate our work, the algorithm is then demonstrated for tuning model predictive controllers on a diesel engine air-path across a fleet of vehicles. The algorithm successfully tuned a single controller to meet a desired tracking error performance, even in the presence of the plant uncertainty inherent across the fleet. Moreover, the algorithm was shown to exhibit a sample complexity comparable to the scenario approach.
  • Item
    Thumbnail Image
    Ordinal Optimisation and the Offline Multiple Noisy Secretary Problem
    Chin, R ; Rowe, JE ; Shames, I ; Manzie, C ; Nešić, D ( 2021-06-02)
    We study the success probability for a variant of the secretary problem, with noisy observations and multiple offline selection. Our formulation emulates, and is motivated by, problems involving noisy selection arising in the disciplines of stochastic simulation and simulation-based optimisation. In addition, we employ the philosophy of ordinal optimisation - involving an ordinal selection rule, and a percentile notion of goal softening for the success probability. As a result, it is shown that the success probability only depends on the underlying copula of the problem. Other general properties for the success probability are also presented. Specialising to the case of Gaussian copulas, we also derive an analytic lower bound for the success probability, which may then be inverted to find sufficiently large sample sizes that guarantee a high success probability arbitrarily close to one.
  • Item
    Thumbnail Image
    Tuning of multivariable model predictive controllersthrough expert bandit feedback
    Ira, AS ; Manzie, C ; Shames, I ; Chin, R ; Nesic, D ; Nakada, H ; Sano, T ( 2020-02-09)
    For certain industrial control applications an explicit function capturing the nontrivial trade-off between competing objectives in closed loop performance is not available. In such scenarios it is common practice to use the human innate ability to implicitly learn such a relationship and manually tune the corresponding controller to achieve the desirable closed loop performance. This approach has its deficiencies because of individual variations due to experience levels and preferences in the absence of an explicit calibration metric. Moreover, as the complexity of the underlying system and/or the controller increase, in the effort to achieve better performance, so does the tuning time and the associated tuning cost. To reduce the overall tuning cost, a tuning framework is proposed herein, whereby a supervised machine learning is used to extract the human-learned cost function and an optimization algorithm that can efficiently deal with a large number of variables, is used for optimizing the extracted cost function. Given the interest in the implementation across many industrial domains and the associated high degree of freedom present in the corresponding tuning process, a Model Predictive Controller applied to air path control in a diesel engine is tuned for the purpose of demonstrating the potential of the framework.
  • Item
    Thumbnail Image
    A Multi-observer Approach for Parameter and State Estimation of Nonlinear Systems with Slowly Varying Parameters
    Cuevas, L ; Nesic, D ; Manzie, C ; Postoyan, R (ELSEVIER, 2020-01-01)
    This manuscript addresses the parameter and state estimation problem for continuous time nonlinear systems with unknown slowly time-varying parameters, which are assumed to belong to a known compact set. The problem is tackled by using the multi-observer approach under the supervisory framework, which generates parameter and state estimates by using a finite number of sample points of the parameter set, a bank of observers, a set of monitoring signals and a selection criterion. This note proposes a novel dynamic sampling policy for the multi-observer technique and studies its convergence properties. We prove that the parameter and state estimation errors are ultimately bounded where the ultimate bounds can be made arbitrarily small if the parameter varies sufficiently slowly, and the number of samples is sufficiently large.