Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 29
  • Item
    No Preview Available
    Reconfigurable optical crosshaul architecture for 6G radio access networks
    Tao, Y ; Ranaweera, C ; Edirisinghe, S ; Lim, C ; Nirmalathas, A ; Wosinska, L ; Song, T (Optica Publishing Group, 2023-12)
    The radio access network (RAN) architecture is undergoing a significant evolution to support the next-generation mobile networks and their emerging applications. To realize scalable and sustainable deployment and operations, RAN needs to consider the requirements of 6G and beyond wireless technologies such as ultra densification of cells, higher data rates, ubiquitous coverage, and new radio spectrum in the millimeter-wave band. This calls for a careful redesign of every aspect of RAN, including its crosshaul. The crosshaul is an important network segment in future RAN, capable of transporting diverse traffic types with varying stringent requirements within RAN. The crosshaul towards 6G is envisioned to be highly intelligent, reconfigurable, and adaptable to dynamic service requirements and network conditions. To this end, we propose a software defined network (SDN)-enabled reconfigurable optical crosshaul architecture (ROCA) that supports heterogeneous crosshaul transport technologies and dynamic functional splittings. ROCA enables efficient and intelligent control of the crosshaul data plane. The proposed architecture with a set of the next-generation RAN (NG-RAN) transport interfaces is evaluated using network models built on the ns-3 network simulator. Simulation results demonstrate the strengths and weaknesses of different crosshaul interfaces in agreement with the understanding of respective NG-RAN interfaces from the literature, which validates the modeling accuracy. We then demonstrate the reconfigurability of the architecture using a dynamic scenario with different reconfiguration strategies for meeting the user and network demands. The results indicate that ROCA serves as a scalable and flexible foundation for supporting high-capacity delay-stringent RAN that can be used in 6G and beyond wireless technologies.
  • Item
  • Item
    No Preview Available
    Joint Beam-and-Probabilistic Shaping Scheme Based on Orbital Angular Momentum Mode for Indoor Optical Wireless Communications
    Li, J ; Yang, Q ; Dai, X ; Lim, C ; Nirmalathas, A (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2023-10-15)
  • Item
    No Preview Available
    Evolution of Short-Range Optical Wireless Communications
    Wang, K ; Song, T ; Wang, Y ; Fang, C ; He, J ; Nirmalathas, A ; Lim, C ; Wong, E ; Kandeepan, S (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2023-02-15)
  • Item
    No Preview Available
    Investigation on Orbital Angular Momentum Mode-Based Beam Shaping for Indoor Optical Wireless Communications
    Li, J ; Yang, Q ; Dai, X ; Lim, C ; Nirmalathas, A (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2022-12-15)
  • Item
    No Preview Available
    Comparison of Adaptive Equalization Methods for Improving Indoor Optical Wireless Communications Employing Few-Mode Based Uniform Beam Shaping
    Li, J ; Lim, C ; Nirmalathas, A (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2022-06-15)
  • Item
    No Preview Available
    Longwave infrared multispectral image sensor system using aluminum-germanium plasmonic filter arrays
    Shaik, NEK ; Widdicombe, B ; Sun, D ; John, SEE ; Ryu, D ; Nirmalathas, A ; Unnithan, RRR (TSINGHUA UNIV PRESS, 2023-07)
    Abstract A multispectral camera records image data in various wavelengths across the electromagnetic spectrum to acquire additional information that a conventional camera fails to capture. With the advent of high-resolution image sensors and color filter technologies, multispectral imagers in the visible wavelengths have become popular with increasing commercial viability in the last decade. However, multispectral imaging in longwave infrared (LWIR, 8–14 μm) is still an emerging area due to the limited availability of optical materials, filter technologies, and high-resolution sensors. Images from LWIR multispectral cameras can capture emission spectra of objects to extract additional information that a human eye fails to capture and thus have important applications in precision agriculture, forestry, medicine, and object identification. In this work, we experimentally demonstrate an LWIR multispectral image sensor with three wavelength bands using optical elements made of an aluminum (Al)-based plasmonic filter array sandwiched in germanium (Ge). To realize the multispectral sensor, the filter arrays are then integrated into a three-dimensional (3D) printed wheel stacked on a low-resolution monochrome thermal sensor. Our prototype device is calibrated using a blackbody and its thermal output has been enhanced with computer vision methods. By applying a state-of-the-art deep learning method, we have also reconstructed multispectral images to a better spatial resolution. Scientifically, our work demonstrates a versatile spectral thermography technique for detecting target signatures in the LWIR range and other advanced spectral analyses.
  • Item
    Thumbnail Image
    Demonstration of Spatial Modulation Using a Novel Active Transmitter Detection Scheme with Signal Space Diversity in Optical Wireless Communications
    Song, T ; Nirmalathas, A ; Lim, C (MDPI, 2022-11)
    Line-of-sight (LOS) indoor optical wireless communications (OWC) enable a high data rate transmission while potentially suffering from optical channel obstructions. Additional LOS links using diversity techniques can tackle the received signal performance degradation, where channel gains often differ in multiple LOS channels. In this paper, a novel active transmitter detection scheme in spatial modulation (SM) is proposed to be incorporated with signal space diversity (SSD) technique to enable an increased OWC system throughput with an improved bit-error-rate (BER). This transmitter detection scheme is composed of a signal pre-distortion technique at the transmitter and a power-based statistical detection method at the receiver, which can address the problem of power-based transmitter detection in SM using carrierless amplitude and phase modulation waveforms with numerous signal levels. Experimental results show that, with the proposed transmitter detection scheme, SSD can be effectively provided with ~0.61 dB signal-to-noise-ratio (SNR) improvement. Additionally, an improved data rate ~7.5 Gbit/s is expected due to effective transmitter detection in SM. The SSD performances at different constellation rotation angles and under different channel gain distributions are also investigated, respectively. The proposed scheme provides a practical solution to implement power-based SM and thus aids the SSD realization for improving system performance.
  • Item
    No Preview Available
    Investigation on repetition-coding and space-time-block-coding for indoor optical wireless communications employing beam shaping based on orbital angular momentum modes
    Li, J ; Yang, Q ; Dai, X ; Lim, C ; Nirmalathas, A (Optica Publishing Group, 2022-06-06)
    In this paper, we propose a novel beam shaping technique based on orbital angular momentum (OAM) modes for indoor optical wireless communications (OWC). Furthermore, we investigate two spatial diversity techniques, namely repetition-coding (RC) and Alamouti-type orthogonal space-time-block-coding (STBC) for indoor OWC employing the new beam shaping technique. The performance of both diversity schemes is systematically analyzed and compared under different beam shaping techniques using different OAM modes with different power ratios of the modes. It is shown that both RC and STBC can improve the system performance and effective coverage and RC outperforms STBC in all the beam shaping techniques regardless of the power ratios of the different modes. In addition, to further understand the performance of RC and STBC schemes against the signal delays induced during OAM mode conversion, the system tolerance of the two schemes to the delay interval is investigated with different OAM mode-based beam shaping techniques. Numerical results show that higher resistance to the delay interval can be achieved in STBC scheme. The advantage is more obvious when employing OAM0 and OAM1 based beam shaping technique.
  • Item
    Thumbnail Image
    Few-Mode Based Beam Shaping for Multi-User Indoor Optical Wireless Communications With Time-Slot Coding
    Li, J ; Lim, C ; Nirmalathas, A (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2022-02)