Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    No Preview Available
    Zero-Error Feedback Capacity for Bounded Stabilization and Finite-State Additive Noise Channels
    Saberi, A ; Farokhi, F ; Nair, GN (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2022-10)
  • Item
    No Preview Available
    Bounded Estimation Over Finite-State Channels: Relating Topological Entropy and Zero-Error Capacity
    Saberi, A ; Farokhi, F ; Nair, GN (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2022-08)
  • Item
    Thumbnail Image
    Non-Stochastic Private Function Evaluation
    Farokhi, F ; Nair, G (IEEE, 2021-04-11)
    We consider private function evaluation to provide query responses based on private data of multiple untrusted entities in such a way that each cannot learn something substantially new about the data of others. First, we introduce perfect non-stochastic privacy in a two-party scenario. Perfect privacy amounts to conditional unrelatedness of the query response and the private uncertain variable of other individuals conditioned on the uncertain variable of a given entity. We show that perfect privacy can be achieved for queries that are functions of the common uncertain variable, a generalization of the common random variable. We compute the closest approximation of the queries that do not take this form. To provide a trade-off between privacy and utility, we relax the notion of perfect privacy. We define almost perfect privacy and show that this new definition equates to using conditional disassociation instead of conditional unrelatedness in the definition of perfect privacy. Then, we generalize the definitions to multi-party function evaluation (more than two data entities). We prove that uniform quantization of query responses, where the quantization resolution is a function of privacy budget and sensitivity of the query (cf., differential privacy), achieves function evaluation privacy.
  • Item
    Thumbnail Image
    An Explicit Formula for the Zero-Error Feedback Capacity of a Class of Finite-State Additive Noise Channels
    Saberi, A ; Farokhi, F ; Nair, GN (IEEE, 2020)
    It is known that for a discrete channel with correlated additive noise, the ordinary capacity with or without feedback both equal log q−H(Z), where H(Z)is the entropy rate of the noise process Z and q is the alphabet size. In this paper, a class of finite-state additive noise channels is introduced. It is shown that the zero-error feedback capacity of such channels is either zero or C 0 f = log q - h(Z), where h(Z) is the topological entropy of the noise process. Moreover, the zero-error capacity without feedback is lower-bounded by log q - 2h(Z). We explicitly compute the zero-error feedback capacity for several examples, including channels with isolated errors and a Gilbert-Elliot channel.