Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    No Preview Available
    TRACKING AND REGRET BOUNDS FOR ONLINE ZEROTH-ORDER EUCLIDEAN AND RIEMANNIAN OPTIMIZATION
    Maass, A ; Manzie, C ; Nesic, D ; Manton, JH ; Shames, I (SIAM PUBLICATIONS, 2022)
  • Item
    Thumbnail Image
    Active Learning for Linear Parameter-Varying System Identification
    Chin, R ; Maass, AI ; Ulapane, N ; Manzie, C ; Shames, I ; Nešić, D ; Rowe, JE ; Nakada, H ( 2020-05-02)
    Active learning is proposed for selection of the next operating points in the design of experiments, for identifying linear parameter-varying systems. We extend existing approaches found in literature to multiple-input multiple-output systems with a multivariate scheduling parameter. Our approach is based on exploiting the probabilistic features of Gaussian process regression to quantify the overall model uncertainty across locally identified models. This results in a flexible framework which accommodates for various techniques to be applied for estimation of local linear models and their corresponding uncertainty. We perform active learning in application to the identification of a diesel engine air-path model, and demonstrate that measures of model uncertainty can be successfully reduced using the proposed framework.
  • Item
    Thumbnail Image
    Tracking and regret bounds for online zeroth-order Euclidean and Riemannian optimisation
    Maass, AI ; Manzie, C ; Nesic, D ; Manton, JH ; Shames, I ( 2020-10-01)
    We study numerical optimisation algorithms that use zeroth-order information to minimise time-varying geodesically-convex cost functions on Riemannian manifolds. In the Euclidean setting, zeroth-order algorithms have received a lot of attention in both the time-varying and time-invariant cases. However, the extension to Riemannian manifolds is much less developed. We focus on Hadamard manifolds, which are a special class of Riemannian manifolds with global nonpositive curvature that offer convenient grounds for the generalisation of convexity notions. Specifically, we derive bounds on the expected instantaneous tracking error, and we provide algorithm parameter values that minimise the algorithm’s performance. Our results illustrate how the manifold geometry in terms of the sectional curvature affects these bounds. Additionally, we provide dynamic regret bounds for this online optimisation setting. To the best of our knowledge, these are the first regret bounds even for the Euclidean version of the problem. Lastly, via numerical simulations, we demonstrate the applicability of our algorithm on an online Karcher mean problem.
  • Item
    Thumbnail Image
    Stochastic stabilisation and power control for nonlinear feedback loops communicating over lossy wireless networks
    Maass, A ; Nesic, D ; Varma, VS ; Postoyan, R ; Lasaulce, S (IEEE, 2020)
    We study emulation-based stabilisation of nonlinear networked control systems communicating over multiple wireless channels subject to packet loss. Specifically, we establish sufficient conditions on the rate of transmission that guarantee Lp stability-in-expectation of the overall closed-loop system. These conditions depend on the cumulative dropout probability of the network nodes for static protocols. We use the obtained stability results to study power control, where we show there are interesting trade-offs between the transmission rate, transmit power, and stability. Lastly, numerical examples are presented to illustrate our results.
  • Item
    Thumbnail Image
    State estimation of non-linear systems over random access wireless networks
    Maass, AI ; Nesic, D (IEEE, 2021-01-01)
    We study emulation-based state estimation for non-linear plants that communicate with a remote observer over a shared wireless network subject to packet losses. To reduce bandwidth usage, a stochastic communication protocol is employed to determine which node should be given access to the network. We describe the overall wireless system as a hybrid model, which allows us to capture the behaviour both between and at transmission instants, whilst covering network features such as random transmission instants, packet losses, and stochastic scheduling. Under this setting, we provide sufficient conditions on the transmission rate that guarantee an input-to-state stability property for the corresponding estimation error system. We illustrate our results with an example of Lipschitz non-linear plants.
  • Item
    Thumbnail Image
    Active Learning for Linear Parameter-Varying System Identification
    Chin, R ; Maass, A ; Ulapane, N ; Manzie, C ; Shames, I ; Nesic, D ; Rowe, JE ; Nakada, H (ELSEVIER, 2020-01-01)
    Active learning is proposed for selection of the next operating points in the design of experiments, for identifying linear parameter-varying systems. We extend existing approaches found in literature to multiple-input multiple-output systems with a multivariate scheduling parameter. Our approach is based on exploiting the probabilistic features of Gaussian process regression to quantify the overall model uncertainty across locally identified models. This results in a flexible framework which accommodates for various techniques to be applied for estimation of local linear models and their corresponding uncertainty. We perform active learning in application to the identification of a diesel engine air-path model, and demonstrate that measures of model uncertainty can be successfully reduced using the proposed framework.
  • Item
    Thumbnail Image
    Tuning of model predictive engine controllers over transient drive cycles
    Maass, A ; Manzie, C ; Shames, I ; Chin, R ; Nesic, D ; Ulapane, N ; Nakada, H (ELSEVIER, 2021-07-18)
    A framework for tuning the parameters of model predictive controllers (MPCs) based on gradient-free optimisation (GFO) is proposed. Efficient calibration of MPCs is often a difficult task given the large number of tuning parameters and their non-intuitive correlation with the output response. We propose an efficient and systematic framework for the tuning of MPC parameters that can be implemented iteratively within the closed-loop setting. The performance of the proposed GFO-based algorithm is evaluated through its application to air-path control for diesel engines over simulations and experiments. We illustrate that the tuned parameters provide satisfactory tracking of reference trajectories over engine drive cycles with only a few iterations. Thereby, we extend existing MPC tuning approaches that calibrate parameters using step responses on the fuel rate and engine speed onto tuning over a full drive cycle response.
  • Item
    Thumbnail Image
    Observer design for non-linear networked control systems with persistently exciting protocols
    Maass, AI ; Nesic, D ; Postoyan, R ; Dower, PM (IEEE, 2020-07)
    We study the design of state observers for nonlinear networked control systems (NCSs) affected by disturbances and measurement noise, via an emulation-like approach. That is, given an observer designed with a specific stability property in the absence of communication constraints, we implement it over a network and we provide sufficient conditions on the latter to preserve the stability property of the observer. In particular, we provide a bound on the maximum allowable transmission interval (MATI) that guarantees an input-to-state stability (ISS) property for the corresponding estimation error system. The stability analysis is trajectory-based, utilises small-gain arguments, and exploits a persistently exciting (PE) property of the scheduling protocols. This property is key in our analysis and allows us to obtain significantly larger MATI bounds in comparison to the ones found in the literature. Our results hold for a general class of NCSs, however, we show that these results are also applicable to NCSs implemented over a specific physical network called WirelessHART (WH). The latter is mainly characterised by its multi-hop structure, slotted communication cycles, and the possibility to simultaneously transmit over different frequencies. We show that our results can be further improved by taking into account the intrinsic structure of the WH-NCS model. That is, we explicitly exploit the model structure in our analysis to obtain an even tighter MATI bound that guarantees the same ISS property for the estimation error system. Finally, to illustrate our results, we present analysis and numerical simulations for a class of Lipschitz non-linear systems and high-gain observers.