Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Freestone, DR ; Kuhlmann, L ; Chong, MS ; Nesic, D ; Grayden, DB ; Aram, P ; Postoyan, R ; CooK, MJ ; Tetzlaff, R ; Elger, CE ; Lehnertz, K (WORLD SCIENTIFIC PUBL CO PTE LTD, 2013-01-01)
    Deterministic and stochastic methods for online state and parameter estimation for neural mass models are presented and applied to synthetic and real seizure electrocorticographic signals in order to determine underlying brain changes that cannot easily be measured. The first ever online estimation of neural mass model parameters from real seizure data is presented. It is shown that parameter changes occur that are consistent with expected brain changes underlying seizures, such as increases in postsynaptic potential amplitudes, increases in the inhibitory postsynaptic time-constant and decreases in the firing threshold at seizure onset, as well as increases in the firing threshold as the seizure progresses towards termination. In addition, the deterministic and stochastic estimation methods are compared and contrasted. This work represents an important foundation for the development of biologically-inspired methods to image underlying brain changes and to develop improved methods for neurological monitoring, control and treatment.