Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Gaussian Processes with Monotonicity Constraints for Preference Learning from Pairwise Comparisons
    Chin, R ; Manzie, C ; Ira, A ; Nesic, D ; Shames, I (IEEE, 2018)
    In preference learning, it is beneficial to incorporate monotonicity constraints for learning utility functions when there is prior knowledge of monotonicity. We present a novel method for learning utility functions with monotonicity constraints using Gaussian process regression. Data is provided in the form of pairwise comparisons between items. Using conditions on monotonicity for the predictive function, an algorithm is proposed which uses the weighted average between prior linear and maximum a posteriori (MAP) utility estimates. This algorithm is formally shown to guarantee monotonicity of the learned utility function in the dimensions desired. The algorithm is tested in a Monte Carlo simulation case study, in which the results suggest that the learned utility by the proposed algorithm performs better in prediction than the standalone linear estimate, and enforces monotonicity unlike the MAP estimate.
  • Item
    Thumbnail Image
    A machine learning approach for tuning model predictive controllers
    Ira, AS ; Shames, I ; Manzie, C ; Chin, R ; Nesic, D ; Nakada, H ; Sano, T (IEEE, 2018-01-01)
    Many industrial domains are characterized by Multiple-Input-Multiple-Output (MIMO) systems for which an explicit relationship capturing the nontrivial trade-off between the competing objectives is not available. Human experts have the ability to implicitly learn such a relationship, which in turn enables them to tune the corresponding controller to achieve the desirable closed-loop performance. However, as the complexity of the MIMO system and/or the controller increase, so does the tuning time and the associated tuning cost. To reduce the tuning cost, a framework is proposed in which a machine learning method for approximating the human-learned cost function along with an optimization algorithm for optimizing it, and consequently tuning the controller, are employed. In this work the focus is on the tuning of Model Predictive Controllers (MPCs), given both the interest in their implementations across many industrial domains and the associated high degrees of freedom present in the corresponding tuning process. To demonstrate the proposed approach, simulation results for the tuning of an air path MPC controller in a diesel engine are presented.
  • Item
    Thumbnail Image
    Active Learning for Linear Parameter-Varying System Identification
    Chin, R ; Maass, A ; Ulapane, N ; Manzie, C ; Shames, I ; Nesic, D ; Rowe, JE ; Nakada, H (ELSEVIER, 2020-01-01)
    Active learning is proposed for selection of the next operating points in the design of experiments, for identifying linear parameter-varying systems. We extend existing approaches found in literature to multiple-input multiple-output systems with a multivariate scheduling parameter. Our approach is based on exploiting the probabilistic features of Gaussian process regression to quantify the overall model uncertainty across locally identified models. This results in a flexible framework which accommodates for various techniques to be applied for estimation of local linear models and their corresponding uncertainty. We perform active learning in application to the identification of a diesel engine air-path model, and demonstrate that measures of model uncertainty can be successfully reduced using the proposed framework.
  • Item
    Thumbnail Image
    Tuning of model predictive engine controllers over transient drive cycles
    Maass, A ; Manzie, C ; Shames, I ; Chin, R ; Nesic, D ; Ulapane, N ; Nakada, H (ELSEVIER, 2021-07-18)
    A framework for tuning the parameters of model predictive controllers (MPCs) based on gradient-free optimisation (GFO) is proposed. Efficient calibration of MPCs is often a difficult task given the large number of tuning parameters and their non-intuitive correlation with the output response. We propose an efficient and systematic framework for the tuning of MPC parameters that can be implemented iteratively within the closed-loop setting. The performance of the proposed GFO-based algorithm is evaluated through its application to air-path control for diesel engines over simulations and experiments. We illustrate that the tuned parameters provide satisfactory tracking of reference trajectories over engine drive cycles with only a few iterations. Thereby, we extend existing MPC tuning approaches that calibrate parameters using step responses on the fuel rate and engine speed onto tuning over a full drive cycle response.