Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 1028
  • Item
    Thumbnail Image
    Cross-Reactivity Assessment of Vaccine-Derived SARS-CoV-2 T Cell Responses against BA.2.86 and JN.1
    Sohail, MS ; Ahmed, SF ; Quadeer, AA ; Mckay, MR (MDPI, 2024-03)
    The SARS-CoV-2 Omicron sub-variants BA.2.86 and JN.1 contain multiple mutations in the spike protein that were not present in previous variants of concern and Omicron sub-variants. Preliminary research suggests that these variants reduce the neutralizing capability of antibodies induced by vaccines, which is particularly significant for JN.1. This raises concern as many widely deployed COVID-19 vaccines are based on the spike protein of the ancestral Wuhan strain of SARS-CoV-2. While T cell responses have been shown to be robust against previous SARS-CoV-2 variants, less is known about the impact of mutations in BA.2.86 and JN.1 on T cell responses. We evaluate the effect of mutations specific to BA.2.86 and JN.1 on experimentally determined T cell epitopes derived from the spike protein of the ancestral Wuhan strain and the spike protein of the XBB.1.5 strain that has been recommended as a booster vaccine. Our data suggest that BA.2.86 and JN.1 affect numerous T cell epitopes in spike compared to previous variants; however, the widespread loss of T cell recognition against these variants is unlikely.
  • Item
    Thumbnail Image
    A Survey of Wearable Sensors and Machine Learning Algorithms for Automated Stroke Rehabilitation
    Sengupta, N ; Rao, AS ; Yan, B ; Palaniswami, M (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2024)
  • Item
    No Preview Available
    OTFS Based Joint Radar and Communication: Signal Analysis Using the Ambiguity Function
    Dayarathna, S ; Smith, P ; Senanayake, R ; Evans, J (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2024)
  • Item
    Thumbnail Image
    Vacuum-Free Liquid-Metal-Printed 2D Semiconducting Tin Dioxide: The Effect of Annealing
    Syed, N ; Nguyen, CK ; Zavabeti, A ; Low, MX ; Wei, X ; Krishnamurthi, V ; Irfan, M ; Lee, WSL ; Duong, NMH ; Nguyen, AT ; Reineck, P ; Bao, L ; Roberts, A ; Daeneke, T (American Chemical Society, 2024)
    Thin film transistors (TFTs) offer unparalleled opportunities for the fabrication of multifunctional electronic and optoelectronic devices. In this work, we report a vacuum-free liquid metal exfoliation technique for rapidly printing ∼2 nm-thick layer of oxide from molten tin. We explore the effect of rapid thermal annealing at 450 °C on the stoichiometry, morphology, and crystal structure of the resulting tin oxide nanosheets. The annealed samples exhibit a dominant SnO2 phase and a high degree of transparency (>99%) in the visible spectra. Field-effect transistors based on the two-dimensional (2D) SnO2 films show typical n-channel conduction with a field-effect mobility of ∼7.5 cm2 V–1 s–1. Photodetectors utilizing annealed tin dioxide demonstrate significant improvement in photoresponsivity reaching a value of 5.2 × 103 A W–1 compared to that found in an unannealed sample at an ultraviolet wavelength of 285 nm. We demonstrate that the improvement in device performance is due to nanocrystalline changes within the oxide layers during the annealing process. This work offers a straightforward and ambient air-compatible method for depositing ultrathin, large-area semiconducting oxides as potential candidates for enabling emerging applications in transparent nanoelectronics and optoelectronics.
  • Item
    Thumbnail Image
    HCV E1 influences the fitness landscape of E2 and may enhance escape from E2-specific antibodies
    Zhang, H ; Bull, RA ; Quadeer, AA ; McKay, MR (OXFORD UNIV PRESS, 2023-12-14)
    The Hepatitis C virus (HCV) envelope glycoprotein E1 forms a non-covalent heterodimer with E2, the main target of neutralizing antibodies. How E1-E2 interactions influence viral fitness and contribute to resistance to E2-specific antibodies remain largely unknown. We investigate this problem using a combination of fitness landscape and evolutionary modeling. Our analysis indicates that E1 and E2 proteins collectively mediate viral fitness and suggests that fitness-compensating E1 mutations may accelerate escape from E2-targeting antibodies. Our analysis also identifies a set of E2-specific human monoclonal antibodies that are predicted to be especially resilient to escape via genetic variation in both E1 and E2, providing directions for robust HCV vaccine development.
  • Item
    Thumbnail Image
    Real-time multimodal sensory detection using widefield hippocampal calcium imaging
    Sun, D ; Yu, Y ; Habibollahi, F ; Unnithan, RR ; French, C (Springer Science and Business Media LLC, )
    Abstract The hippocampus is a complex structure that has a major role in learning and memory. It also integrates information from multisensory modalities, supporting a comprehensive cognitive map for both spatial and non-spatial information. Previous studies have been limited to real-time spatial decoding, typically using electrodes. However, decoding hippocampal non-spatial information in real time has not been previously described. Here, we have constructed a real-time optical decoder driven by the calcium activity of large neuronal ensembles to decode spatial, visual, and auditory information effectively. Using advanced machine learning techniques, our rapid end-to-end decoding achieves high accuracy and provides a multisensory modality detection method. This method enables the real-time investigation of hippocampal neural coding and allows for direct neural communication with animals and patients affected by functional impairments. The ability to decode multimodal sensory inputs in real time thus forms the basis for an all-optical brain-computer interface.
  • Item
    Thumbnail Image
    Hippocampal cognitive and relational map paradigms explored by multisensory encoding recording with wide-field calcium imaging
    Sun, D ; Shaik, NEK ; Unnithan, RR ; French, C (CELL PRESS, 2024-01-19)
    Two major theories have been proposed to explain hippocampal function: cognitive map and the relational theories. They differ in their views on whether hippocampal neurons can process non-spatial information independently. However, the explanatory power of these theories remains unresolved. Additionally, more complex aspects of hippocampal neural population responses to non-spatial stimuli have not been investigated. Here, we used miniaturized fluorescence microscopy to investigate mouse CA1 responses to spatial, visual, auditory modalities, and combinations. We found that while neuronal populations primarily processed spatial information, they also showed strong sensitivity to non-spatial modalities independent of spatial inputs, exhibiting distinct neuronal dynamics and coding patterns. These results provide strong support for the relational theories.
  • Item
    No Preview Available
    Reconfigurable optical crosshaul architecture for 6G radio access networks
    Tao, Y ; Ranaweera, C ; Edirisinghe, S ; Lim, C ; Nirmalathas, A ; Wosinska, L ; Song, T (Optica Publishing Group, 2023-12)
    The radio access network (RAN) architecture is undergoing a significant evolution to support the next-generation mobile networks and their emerging applications. To realize scalable and sustainable deployment and operations, RAN needs to consider the requirements of 6G and beyond wireless technologies such as ultra densification of cells, higher data rates, ubiquitous coverage, and new radio spectrum in the millimeter-wave band. This calls for a careful redesign of every aspect of RAN, including its crosshaul. The crosshaul is an important network segment in future RAN, capable of transporting diverse traffic types with varying stringent requirements within RAN. The crosshaul towards 6G is envisioned to be highly intelligent, reconfigurable, and adaptable to dynamic service requirements and network conditions. To this end, we propose a software defined network (SDN)-enabled reconfigurable optical crosshaul architecture (ROCA) that supports heterogeneous crosshaul transport technologies and dynamic functional splittings. ROCA enables efficient and intelligent control of the crosshaul data plane. The proposed architecture with a set of the next-generation RAN (NG-RAN) transport interfaces is evaluated using network models built on the ns-3 network simulator. Simulation results demonstrate the strengths and weaknesses of different crosshaul interfaces in agreement with the understanding of respective NG-RAN interfaces from the literature, which validates the modeling accuracy. We then demonstrate the reconfigurability of the architecture using a dynamic scenario with different reconfiguration strategies for meeting the user and network demands. The results indicate that ROCA serves as a scalable and flexible foundation for supporting high-capacity delay-stringent RAN that can be used in 6G and beyond wireless technologies.
  • Item
    No Preview Available
    A Geometry-Based Distributed Connectivity Maintenance Algorithm for Discrete-time Multi-Agent Systems with Visual Sensing Constraints
    Li, X ; Fu, J ; Liu, M ; Xu, Y ; Tan, Y ; Xin, Y ; Pu, Y ; Oetomo, D (WORLD SCIENTIFIC PUBL CO PTE LTD, 2024-03)
    This paper presents a novel approach to address the challenge of maintaining connectivity within a multi-agent system (MAS) when utilizing directional visual sensors. These sensors have become essential tools for enhancing communication and connectivity in MAS, but their geometric constraints pose unique challenges when designing controllers. Our approach, grounded in geometric principles, leverages a mathematical model of directional visual sensors and employs a gradient-descent optimization method to determine the position and orientation constraints for each sensor based on its geometric configuration. This methodology ensures network connectivity, provided that initial geometric constraints are met. Experimental results validate the efficacy of our approach, highlighting its practical applicability for a range of tasks within MAS.
  • Item
    No Preview Available
    On Distributed Nonconvex Optimisation via Modified ADMM
    Mafakheri, B ; Manton, JH ; Shames, I (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2023)