Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 20
  • Item
  • Item
    Thumbnail Image
    An information-based approach to sensor management in large dynamic networks
    Kreucher, CM ; Hero, AO ; Kastella, KD ; Morelande, MR (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2007-05)
  • Item
    Thumbnail Image
    Feedback control under data rate constraints: An overview
    Nair, GN ; Fagnani, F ; Zampieri, S ; Evans, RJ (INSTITUTE OF ELECTRICAL ELECTRONICS ENGINEERS (IEEE), 2007)
    The emerging area of control with limited data rates incorporates ideas from both control and information theory. The data rate constraint introduces quantization into the feedback loop and gives the interconnected system a two-fold nature, continuous and symbolic. In this paper, we review the results available in the literature on data-rate-limited control. For linear systems, we show how fundamental tradeoffs between the data rate and control goals, such as stability, mean entry times, and asymptotic state norms, emerge naturally. While many classical tools from both control and information theory can still be used in this context, it turns out that the deepest results necessitate a novel, integrated view of both disciplines.
  • Item
    Thumbnail Image
    Control of large-scale irrigation networks
    Cantoni, M ; Weyer, E ; Li, Y ; Ooi, SK ; Mareels, I ; Ryan, M (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2007-01)
  • Item
    Thumbnail Image
    License plate localization based on a probabilistic model
    Al-Hmouz, R ; Challa, S (SPRINGER, 2010-04)
  • Item
    Thumbnail Image
    Very high speed, close field, object positioning using tri-linear CCDs
    Jahshan, D ; Bredenfeld, A ; Jacoff, A ; Noda, I ; Takahashi, Y (SPRINGER-VERLAG BERLIN, 2006)
  • Item
    Thumbnail Image
    Value Function Based Reinforcement Learning in Changing Markovian Environments
    Csaji, BC ; Monostori, L (MICROTOME PUBL, 2008-08)
  • Item
    Thumbnail Image
    Adaptive stochastic resource control:: A machine learning approach
    Csaji, BC ; Monostori, L (AI ACCESS FOUNDATION, 2008)
    The paper investigates stochastic resource allocation problems with scarce, reusable resources and non-preemtive, time-dependent, interconnected tasks. This approach is a natural generalization of several standard resource management problems, such as scheduling and transportation problems. First, reactive solutions are considered and defined as control policies of suitably reformulated Markov decision processes (MDPs). We argue that this reformulation has several favorable properties, such as it has finite state and action spaces, it is aperiodic, hence all policies are proper and the space of control policies can be safely restricted. Next, approximate dynamic programming (ADP) methods, such as fitted Q-learning, are suggested for computing an efficient control policy. In order to compactly maintain the cost-to-go function, two representations are studied: hash tables and support vector regression (SVR), particularly, nu-SVRs. Several additional improvements, such as the application of limited-lookahead rollout algorithms in the initial phases, action space decomposition, task clustering and distributed sampling are investigated, too. Finally, experimental results on both benchmark and industry-related data are presented.
  • Item
  • Item
    Thumbnail Image
    PROTEIN SECONDARY STRUCTURE PREDICTION USING SUPPORT VECTOR MACHINES AND A NEW FEATURE REPRESENTATION
    Gubbi, J ; Lai, DTH ; Palaniswami, M ; Parker, M (WORLD SCIENTIFIC PUBL CO PTE LTD, 2006-12)
    Knowledge of the secondary structure and solvent accessibility of a protein plays a vital role in the prediction of fold, and eventually the tertiary structure of the protein. A challenging issue of predicting protein secondary structure from sequence alone is addressed. Support vector machines (SVM) are employed for the classification and the SVM outputs are converted to posterior probabilities for multi-class classification. The effect of using Chou–Fasman parameters and physico-chemical parameters along with evolutionary information in the form of position specific scoring matrix (PSSM) is analyzed. These proposed methods are tested on the RS126 and CB513 datasets. A new dataset is curated (PSS504) using recent release of CATH. On the CB513 dataset, sevenfold cross-validation accuracy of 77.9% was obtained using the proposed encoding method. A new method of calculating the reliability index based on the number of votes and the Support Vector Machine decision value is also proposed. A blind test on the EVA dataset gives an average Q3accuracy of 74.5% and ranks in top five protein structure prediction methods. Supplementary material including datasets are available on .