Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    The Down Syndrome-Associated Protein, Regulator of Calcineurin-1, is Altered in Alzheimer's Disease and Dementia with Lewy Bodies
    Malakooti, N ; FOWLER, C ; Volitakis, I ; McLean, CA ; Kim, RC ; Bush, A ; REMBACH, A ; PRITCHARD, MA ; Finkelstein, DI ; Adlard, PA (OMICS International, 2019)
    There is a known relationship between Alzheimer's disease (AD) and Down syndrome (DS), with the latter typically developing AD-like neuropathology in mid-life. In order to further understand this relationship we examined intersectin-1 (ITSN1) and the regulator of calcineurin-1 (RCAN1), proteins involved in endosomal and lysosomal trafficking that are over-expressed in DS. We examined RCAN1 and ITSN1 levels (both long (-L) and short (-S) isoforms) and the level of endogenous metals in White Blood Cells (WBCs) collected from AD patients who were enrolled in the Australian Imaging, Biomarker and Lifestyle Study on Ageing (AIBL). We also examined RCAN1 and ITSN1-S and -L in post-mortem brain tissue in a separate cohort of patients with AD or other types of dementia including Dementia with Lewy Bodies (DLB) and non-Alzheimer's disease dementia. We found that RCAN1 was significantly elevated in AD and DLB brain compared with controls, but there was no difference in the level of RCAN1 in WBCs of AD patients. There were no differences in the levels of ITSN1-L and -S between AD and the control, nor between other types of dementia and the control. We found that there were no differences in the levels of metals between AD and the control WBCs. In conclusion, our data demonstrate that RCAN1 is differentially regulated between the peripheral and central compartments in AD and should be further investigated to understand its potential role in dementia of AD and DLB.
  • Item
    Thumbnail Image
    Zn-DTSM, A Zinc Ionophore with Therapeutic Potential for Acrodermatitis Enteropathica?
    Bray, L ; Volitakis, I ; Ayton, S ; Bush, AI ; Adlard, PA (MDPI, 2019-01)
    Acrodermatitis enteropathica (AE) is a rare disease characterised by a failure in intestinal zinc absorption, which results in a host of symptoms that can ultimately lead to death if left untreated. Current clinical treatment involves life-long high-dose zinc supplements, which can introduce complications for overall nutrient balance in the body. Previous studies have therefore explored the pharmacological treatment of AE utilising metal ionophore/transport compounds in an animal model of the disease (conditional knockout (KO) of the zinc transporter, Zip4), with the perspective of finding an alternative to zinc supplementation. In this study we have assessed the utility of a different class of zinc ionophore compound (zinc diethyl bis(N4-methylthiosemicarbazone), Zn-DTSM; Collaborative Medicinal Development, Sausalito, CA, USA) to the one we have previously described (clioquinol), to determine whether it is effective at preventing the stereotypical weight loss present in the animal model of disease. We first utilised an in vitro assay to assess the ionophore capacity of the compound, and then assessed the effect of the compound in three in vivo animal studies (in 1.5-month-old mice at 30 mg/kg/day, and in 5-month old mice at 3 mg/kg/day and 30 mg/kg/day). Our data demonstrate that Zn-DTSM has a pronounced effect on preventing weight loss when administered daily at 30 mg/kg/day; this was apparent in the absence of any added exogenous zinc. This compound had little overall effect on zinc content in various tissues that were assessed, although further characterisation is required to more fully explore the cellular changes underlying the physiological benefit of this compound. These data suggest that Zn-DTSM, or similar compounds, should be further explored as potential therapeutic options for the long-term treatment of AE.
  • Item
    Thumbnail Image
    The effect of paraformaldehyde fixation and sucrose cryoprotection on metal concentration in murine neurological tissue
    Hare, DJ ; George, JL ; Bray, L ; Volitakis, I ; Vais, A ; Ryan, TM ; Cherny, RA ; Bush, AI ; Masters, CL ; Adlard, PA ; Doble, PA ; Finkelstein, DI (ROYAL SOC CHEMISTRY, 2014-03)
  • Item
    Thumbnail Image
    Iron accumulation confers neurotoxicity to a vulnerable population of nigral neurons: implications for Parkinson's disease
    Ayton, S ; Lei, P ; Adlard, PA ; Volitakis, I ; Cherny, RA ; Bush, AI ; Finkelstein, DI (BMC, 2014-07-10)
    BACKGROUND: The substantia nigra (SN) midbrain nucleus is constitutively iron rich. Iron levels elevate further with age, and pathologically in Parkinson's disease (PD). Iron accumulation in PD SN involves dysfunction of ceruloplasmin (CP), which normally promotes iron export. We previously showed that ceruloplasmin knockout (CP KO) mice exhibit Parkinsonian neurodegeneration (~30% nigral loss) by 6 months, which is prevented by iron chelation. Here, we explored whether known iron-stressors of the SN (1) aging and (2) MPTP, would exaggerate the lesion severity of CP KO mice. FINDINGS: We show that while 5 month old CP KO mice exhibited nigral iron elevation and loss of SN neurons, surprisingly, aging CP KO mice to 14 months did not exacerbate iron elevation or SN neuronal loss. Unlike young mice, iron chelation therapy in CP KO mice between 9-14 months did not rescue neuronal loss. MPTP exaggerated iron elevation in young CP KO mice but did not increase cell death when compared to WTs. CONCLUSIONS: We conclude that there may exist a proportion of substantia nigra neurons that depend on CP for protection against iron neurotoxicity and could be protected by iron-based therapeutics. Death of the remaining neurons in Parkinson's disease is likely caused by parallel disease mechanisms, which may call for additional therapeutic options.
  • Item
    Thumbnail Image
    Mitochondrial Oxidative Stress Causes Hyperphosphorylation of Tau
    Melov, S ; Adlard, PA ; Morten, K ; Johnson, F ; Golden, TR ; Hinerfeld, D ; Schilling, B ; Mavros, C ; Masters, CL ; Volitakis, I ; Li, Q-X ; Laughton, K ; Hubbard, A ; Cherny, RA ; Gibson, B ; Bush, AI ; Khoury, JE (PUBLIC LIBRARY SCIENCE, 2007-06-20)
    Age-related neurodegenerative disease has been mechanistically linked with mitochondrial dysfunction via damage from reactive oxygen species produced within the cell. We determined whether increased mitochondrial oxidative stress could modulate or regulate two of the key neurochemical hallmarks of Alzheimer's disease (AD): tau phosphorylation, and beta-amyloid deposition. Mice lacking superoxide dismutase 2 (SOD2) die within the first week of life, and develop a complex heterogeneous phenotype arising from mitochondrial dysfunction and oxidative stress. Treatment of these mice with catalytic antioxidants increases their lifespan and rescues the peripheral phenotypes, while uncovering central nervous system pathology. We examined sod2 null mice differentially treated with high and low doses of a catalytic antioxidant and observed striking elevations in the levels of tau phosphorylation (at Ser-396 and other phospho-epitopes of tau) in the low-dose antioxidant treated mice at AD-associated residues. This hyperphosphorylation of tau was prevented with an increased dose of the antioxidant, previously reported to be sufficient to prevent neuropathology. We then genetically combined a well-characterized mouse model of AD (Tg2576) with heterozygous sod2 knockout mice to study the interactions between mitochondrial oxidative stress and cerebral Ass load. We found that mitochondrial SOD2 deficiency exacerbates amyloid burden and significantly reduces metal levels in the brain, while increasing levels of Ser-396 phosphorylated tau. These findings mechanistically link mitochondrial oxidative stress with the pathological features of AD.