Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Treating Alzheimer's disease by targeting iron
    Nikseresht, S ; Bush, A ; Ayton, S (WILEY, 2019-09)
    No disease modifying drugs have been approved for Alzheimer's disease despite recent major investments by industry and governments throughout the world. The burden of Alzheimer's disease is becoming increasingly unsustainable, and given the last decade of clinical trial failures, a renewed understanding of the disease mechanism is called for, and trialling of new therapeutic approaches to slow disease progression is warranted. Here, we review the evidence and rational for targeting brain iron in Alzheimer's disease. Although iron elevation in Alzheimer's disease was reported in the 1950s, renewed interest has been stimulated by the advancement of fluid and imaging biomarkers of brain iron that predict disease progression, and the recent discovery of the iron-dependent cell death pathway termed ferroptosis. We review these emerging clinical and biochemical findings and propose how this pathway may be targeted therapeutically to slow Alzheimer's disease progression. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.
  • Item
    Thumbnail Image
    Mice overexpressing hepcidin suggest ferroportin does not play a major role in Mn homeostasis
    Jin, L ; Frazer, DM ; Lu, Y ; Wilkins, SJ ; Ayton, S ; Bush, A ; Anderson, GJ (ROYAL SOC CHEMISTRY, 2019-05-01)
    Manganese is an essential metal that is required for a wide range of biological functions. Ferroportin (FPN), the only known cellular exporter of iron, has also been proposed to play a role in manganese export, but this relationship is incompletely understood. To investigate this in more detail in vivo, we examined the relative distributions of manganese and iron in TMPRSS6 deficient mice, which are characterized by constitutively high expression of the iron regulatory hormone hepcidin and, consequently, very low FPN levels in their tissues. Tmprss6-/- mice showed frank iron deficiency and reduced iron levels in most tissues, consistent with FPN playing an important role in the distribution of this metal, but manganese levels were largely unaffected. Associated studies using intestine-specific FPN knockout mice showed that loss of FPN significantly reduced the dietary absorption of iron, but had no effect on manganese intake. Taken together, our data suggest that FPN does not play a major role in Mn transport in vivo. They do not exclude a minor role for FPN in manganese homeostasis, nor the possibility that the transporter may be relevant at high Mn levels, but at physiological levels of this metal, other transport proteins appear to be more important.
  • Item
    Thumbnail Image
    Zn-DTSM, A Zinc Ionophore with Therapeutic Potential for Acrodermatitis Enteropathica?
    Bray, L ; Volitakis, I ; Ayton, S ; Bush, AI ; Adlard, PA (MDPI, 2019-01)
    Acrodermatitis enteropathica (AE) is a rare disease characterised by a failure in intestinal zinc absorption, which results in a host of symptoms that can ultimately lead to death if left untreated. Current clinical treatment involves life-long high-dose zinc supplements, which can introduce complications for overall nutrient balance in the body. Previous studies have therefore explored the pharmacological treatment of AE utilising metal ionophore/transport compounds in an animal model of the disease (conditional knockout (KO) of the zinc transporter, Zip4), with the perspective of finding an alternative to zinc supplementation. In this study we have assessed the utility of a different class of zinc ionophore compound (zinc diethyl bis(N4-methylthiosemicarbazone), Zn-DTSM; Collaborative Medicinal Development, Sausalito, CA, USA) to the one we have previously described (clioquinol), to determine whether it is effective at preventing the stereotypical weight loss present in the animal model of disease. We first utilised an in vitro assay to assess the ionophore capacity of the compound, and then assessed the effect of the compound in three in vivo animal studies (in 1.5-month-old mice at 30 mg/kg/day, and in 5-month old mice at 3 mg/kg/day and 30 mg/kg/day). Our data demonstrate that Zn-DTSM has a pronounced effect on preventing weight loss when administered daily at 30 mg/kg/day; this was apparent in the absence of any added exogenous zinc. This compound had little overall effect on zinc content in various tissues that were assessed, although further characterisation is required to more fully explore the cellular changes underlying the physiological benefit of this compound. These data suggest that Zn-DTSM, or similar compounds, should be further explored as potential therapeutic options for the long-term treatment of AE.
  • Item
    Thumbnail Image
    Cellular Senescence and Iron Dyshomeostasis in Alzheimer's Disease
    Masaldan, S ; Belaidi, AA ; Ayton, S ; Bush, A (MDPI, 2019-06)
    Iron dyshomeostasis is a feature of Alzheimer's disease (AD). The impact of iron on AD is attributed to its interactions with the central proteins of AD pathology (amyloid precursor protein and tau) and/or through the iron-mediated generation of prooxidant molecules (e.g., hydroxyl radicals). However, the source of iron accumulation in pathologically relevant regions of the brain and its contribution to AD remains unclear. One likely contributor to iron accumulation is the age-associated increase in tissue-resident senescent cells that drive inflammation and contribute to various pathologies associated with advanced age. Iron accumulation predisposes ageing tissue to oxidative stress that can lead to cellular dysfunction and to iron-dependent cell death modalities (e.g., ferroptosis). Further, elevated brain iron is associated with the progression of AD and cognitive decline. Elevated brain iron presents a feature of AD that may be modified pharmacologically to mitigate the effects of age/senescence-associated iron dyshomeostasis and improve disease outcome.
  • Item
    Thumbnail Image
    Parkinson's disease prevalence and the association with rurality and agricultural determinants
    Ayton, D ; Ayton, S ; Barker, AL ; Bush, AI ; Warren, N (ELSEVIER SCI LTD, 2019-04)
    INTRODUCTION: Parkinson's disease prevalence has been associated with rurality and pesticide use in studies throughout the world. Here, Parkinson's disease (PD) medication usage was used to estimate prevalence in 79 urban and rural localities in Victoria, Australia (5.3 million people). METHODS: An ecological study design was used to determine whether PD medication usage, as a reporter of PD diagnosis, differed between 79 regions in Victoria, and whether variance in PD prevalence was associated with population demographics using multiple regression. Cluster formation probability was calculated using Monte Carlo modelling. The association between agricultural production and PD prevalence was conducted with Bonferroni-adjusted Mann-Whitney-U tests. RESULTS: PD prevalence in Victoria was estimated to be 0.85%, which was greater in rural (1.02%) compared to urban (0.80%) locations; a difference that was abolished when corrected for demographic variables. Four of the highest prevalent regions (regardless of covariate adjustment) were clustered in northwest Victoria; a formation that was unlikely to be due to chance (P = 0.00095). These regions had increased production of pulse crops. CONCLUSIONS: PD prevalence was not associated with rurality, but associated with areas of pulse production. Pulses are plants of the fabaceae family, where many of these species secrete the PD toxin, rotenone, as a natural pesticide, which may underlie increased risk. This study is limited by the data collection method, where people who do not take PD medication for their disease, or take PD-associated medication for other diseases, may impact the estimated prevalence.