Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    No Preview Available
    Iron intake, brain iron, and Alzheimer’s disease among community‐dwelling older adults
    Agarwal, P ; Ayton, S ; Wang, Y ; Agrawal, S ; Bennett, DA ; Barnes, LL ; Leurgans, SE ; Bush, AI ; Schneider, JA (Wiley, 2021-12)
    Background Iron is an essential trace metal for brain health but maybe damaging when in excess, for example, through the regulated cell death program, ferroptosis. We earlier reported that higher brain iron levels are associated with faster cognitive decline and more neurofibrillary tangles, but the cause of iron elevation is unknown. This study investigates dietary and demographic factors associated with brain iron levels, Alzheimer’s Disease (AD) pathology, and cognitive decline. Method The study was conducted in 614 decedents (age‐at‐death:91.2±7.2years; education:14.6±3years;70% females) of the Rush Memory and Aging Project. AD pathology was assessed using standard criteria. Brain iron levels were evaluated in four brain regions (inferior temporal, mid frontal, and anterior cingulate cortices, and cerebellum) using Inductively Coupled Plasma Mass Spectrophotometry, and a composite mean z‐score was generated. Cognitive performance measured with 19 tests examined annually until death. Mean annual dietary iron intake was obtained from a validated food frequency questionnaire. Linear and logistic regression models with stepwise selection were used to investigate associations. Result The mean dietary iron intake (up to>10 years of follow‐up before death) was not associated with postmortem brain iron levels, cognitive decline, or global AD pathology. Age‐at‐death (β=‐0.01,p=0.001), sex (β=0.30,p<0.0001), smoking (β=‐0.20,p=0.0008), and APOE‐ε 4 status (β=1.65,p=0.01) were each associated with higher brain iron levels. Except for APOE‐ε 4 status, these associations were retained when further controlled for AD pathology. Among dietary factors, in the age‐adjusted model, total fat (β=0.007,p=0.04) was positively, and omega‐3 fat (β=‐0.18,p=0.001) was negatively associated with higher brain iron levels. However, with further adjustment for age, sex, smoking, and APO‐ε 4 status, only the omega‐3 association, was retained. Conclusion Unlike brain iron, dietary iron intake does not relate to AD pathology or cognitive decline. This may not be surprising since the blood‐brain barrier is relatively impermeable to fluctuations in blood iron levels. Brain iron accumulation in older adults relates to demographic factors independent of AD pathology. Overall, brain iron was not associated with dietary iron but was inversely associated with omega‐3 fats. Further studies on fat intake, dietary fat and iron interaction, and its relationship with brain measures are warranted.
  • Item
    Thumbnail Image
    Regional brain iron associated with deterioration in Alzheimer's disease: A large cohort study and theoretical significance
    Ayton, S ; Portbury, S ; Kalinowski, P ; Agarwal, P ; Diouf, I ; Schneider, JA ; Morris, MC ; Bush, AI (WILEY, 2021-07)
    OBJECTIVE: This paper is a proposal for an update of the iron hypothesis of Alzheimer's disease (AD), based on large-scale emerging evidence. BACKGROUND: Iron featured historically early in AD research efforts for its involvement in the amyloid and tau proteinopathies, APP processing, genetics, and one clinical trial, yet iron neurochemistry remains peripheral in mainstream AD research. Much of the effort investigating iron in AD has focused on the potential for iron to provoke the onset of disease, by promoting proteinopathy though increased protein expression, phosphorylation, and aggregation. NEW/UPDATED HYPOTHESIS: We provide new evidence from a large post mortem cohort that brain iron levels within the normal range were associated with accelerated ante mortem disease progression in cases with underlying proteinopathic neuropathology. These results corroborate recent findings that argue for an additional downstream role for iron as an effector of neurodegeneration, acting independently of tau or amyloid pathologies. We hypothesize that the level of tissue iron is a trait that dictates the probability of neurodegeneration in AD by ferroptosis, a regulated cell death pathway that is initiated by signals such as glutathione depletion and lipid peroxidation. MAJOR CHALLENGES FOR THE HYPOTHESIS: While clinical biomarkers of ferroptosis are still in discovery, the demonstration of additional ferroptotic correlates (genetic or biomarker derived) of disease progression is required to test this hypothesis. The genes implicated in familial AD are not known to influence ferroptosis, although recent reports on APP mutations and apolipoprotein E allele (APOE) have shown impact on cellular iron retention. Familial AD mutations will need to be tested for their impact on ferroptotic vulnerability. Ultimately, this hypothesis will be substantiated, or otherwise, by a clinical trial of an anti-ferroptotic/iron compound in AD patients. LINKAGE TO OTHER MAJOR THEORIES: Iron has historically been linked to the amyloid and tau proteinopathies of AD. Tau, APP, and apoE have been implicated in physiological iron homeostasis in the brain. Iron is biochemically the origin of most chemical radicals generated in biochemistry and thus closely associated with the oxidative stress theory of AD. Iron accumulation is also a well-established consequence of aging and inflammation, which are major theories of disease pathogenesis.
  • Item
    Thumbnail Image
    The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson's disease (vol 5, 53, 2017)
    Finkelstein, DI ; Billings, JL ; Adlard, PA ; Ayton, S ; Sedjahtera, A ; Masters, CL ; Wilkins, S ; Shackleford, DM ; Charman, SA ; Bal, W ; Zawisza, IA ; Kurowska, E ; Gundlach, AL ; Ma, S ; Bush, AI ; Hare, DJ ; Doble, PA ; Crawford, S ; Gautier, ECL ; Parsons, J ; Huggins, P ; Barnham, KJ ; Cherny, RA (BMC, 2021-09-29)
  • Item
    Thumbnail Image
    Zinc drives vasorelaxation by acting in sensory nerves, endothelium and smooth muscle
    Betrie, AH ; Brock, JA ; Harraz, OF ; Bush, A ; He, G-W ; Nelson, MT ; Angus, JA ; Wright, CE ; Ayton, S (NATURE RESEARCH, 2021-06-01)
    Zinc, an abundant transition metal, serves as a signalling molecule in several biological systems. Zinc transporters are genetically associated with cardiovascular diseases but the function of zinc in vascular tone regulation is unknown. We found that elevating cytoplasmic zinc using ionophores relaxed rat and human isolated blood vessels and caused hyperpolarization of smooth muscle membrane. Furthermore, zinc ionophores lowered blood pressure in anaesthetized rats and increased blood flow without affecting heart rate. Conversely, intracellular zinc chelation induced contraction of selected vessels from rats and humans and depolarized vascular smooth muscle membrane potential. We demonstrate three mechanisms for zinc-induced vasorelaxation: (1) activation of transient receptor potential ankyrin 1 to increase calcitonin gene-related peptide signalling from perivascular sensory nerves; (2) enhancement of cyclooxygenase-sensitive vasodilatory prostanoid signalling in the endothelium; and (3) inhibition of voltage-gated calcium channels in the smooth muscle. These data introduce zinc as a new target for vascular therapeutics.
  • Item
  • Item
    Thumbnail Image
    CuII(atsm) inhibits ferroptosis: Implications for treatment of neurodegenerative disease
    Southon, A ; Szostak, K ; Acevedo, KM ; Dent, KA ; Volitakis, I ; Belaidi, AA ; Barnham, KJ ; Crouch, PJ ; Ayton, S ; Donnelly, PS ; Bush, A (WILEY, 2020-02)
    BACKGROUND AND PURPOSE: Diacetyl-bis(4-methyl-3-thiosemicarbazonato)copperII (CuII (atsm)) ameliorates neurodegeneration and delays disease progression in mouse models of amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD), yet the mechanism of action remains uncertain. Promising results were recently reported for separate Phase 1 studies in ALS patients and PD patients. Affected tissue in these disorders shares features of elevated Fe, low glutathione and increased lipid peroxidation consistent with ferroptosis, a novel form of regulated cell death. We therefore evaluated the ability of CuII (atsm) to inhibit ferroptosis. EXPERIMENTAL APPROACH: Ferroptosis was induced in neuronal cell models by inhibition of glutathione peroxidase-4 activity with RSL3 or by blocking cystine uptake with erastin. Cell viability and lipid peroxidation were assessed and the efficacy of CuII (atsm) was compared to the known antiferroptotic compound liproxstatin-1. KEY RESULTS: CuII (atsm) protected against lipid peroxidation and ferroptotic lethality in primary and immortalised neuronal cell models (EC50 : ≈130 nM, within an order of magnitude of liproxstatin-1). NiII (atsm) also prevented ferroptosis with similar potency, whereas ionic CuII did not. In cell-free systems, CuII (atsm) and NiII (atsm) inhibited FeII -induced lipid peroxidation, consistent with these compounds quenching lipid radicals. CONCLUSIONS AND IMPLICATIONS: The antiferroptotic activity of CuII (atsm) could therefore be the disease-modifying mechanism being tested in ALS and PD trials. With potency in vitro approaching that of liproxstatin-1, CuII (atsm) possesses favourable properties such as oral bioavailability and entry into the brain that make it an attractive investigational product for clinical trials of ferroptosis-related diseases.
  • Item
    Thumbnail Image
    The essential elements of Alzheimer's disease
    Lei, P ; Ayton, S ; Bush, A (ELSEVIER, 2021)
    Treatments for Alzheimer's disease (AD) directed against the prominent amyloid plaque neuropathology are yet to be proved effective despite many phase 3 clinical trials. There are several other neurochemical abnormalities that occur in the AD brain that warrant renewed emphasis as potential therapeutic targets for this disease. Among those are the elementomic signatures of iron, copper, zinc, and selenium. Here, we review these essential elements of AD for their broad potential to contribute to Alzheimer's pathophysiology, and we also highlight more recent attempts to translate these findings into therapeutics. A reinspection of large bodies of discovery in the AD field, such as this, may inspire new thinking about pathogenesis and therapeutic targets.
  • Item
    Thumbnail Image
    Iron accumulation in skeletal muscles of old mice is associated with impaired regeneration after ischaemia-reperfusion damage
    Alves, FM ; Kysenius, K ; Caldow, MK ; Hardee, JP ; Crouch, PJ ; Ayton, S ; Bush, AI ; Lynch, GS ; Koopman, R (WILEY, 2021-04)
    BACKGROUND: Oxidative stress is implicated in the insidious loss of muscle mass and strength that occurs with age. However, few studies have investigated the role of iron, which is elevated during ageing, in age-related muscle wasting and blunted repair after injury. We hypothesized that iron accumulation leads to membrane lipid peroxidation, muscle wasting, increased susceptibility to injury, and impaired muscle regeneration. METHODS: To examine the role of iron in age-related muscle atrophy, we compared the skeletal muscles of 3-month-old with 22- to 24-month-old 129SvEv FVBM mice. We assessed iron distribution and total elemental iron using laser ablation inductively coupled plasma mass spectrometry and Perls' stain on skeletal muscle cross-sections. In addition, old mice underwent ischaemia-reperfusion (IR) injury (90 min ischaemia), and muscle regeneration was assessed 14 days after injury. Immunoblotting was used to determine lipid peroxidation (4HNE) and iron-related proteins. To determine whether muscle iron content can be altered, old mice were treated with deferiprone (DFP) in the drinking water, and we assessed its effects on muscle regeneration after injury. RESULTS: We observed a significant increase in total elemental iron (+43%, P < 0.05) and lipid peroxidation (4HNE: +76%, P < 0.05) in tibialis anterior muscles of old mice. Iron was further increased after injury (adult: +81%, old: +135%, P < 0.05) and associated with increased lipid peroxidation (+41%, P < 0.05). Administration of DFP did not impact iron or measures of lipid peroxidation in skeletal muscle or modulate muscle mass. Increased muscle iron concentration and lipid peroxidation were associated with less efficient regeneration, evident from the smaller fibres in cross-sections of tibialis anterior muscles (-24%, P < 0.05) and an increased percentage of fibres with centralized nuclei (+4124%, P < 0.05) in muscles of old compared with adult mice. Administration of DFP lowered iron after IR injury (PRE: -32%, P < 0.05 and POST: -41%, P < 0.05), but did not translate to structural improvements. CONCLUSIONS: Muscles from old mice have increased iron levels, which are associated with increased lipid peroxidation, increased susceptibility to IR injury, and impaired muscle regeneration. Our results suggest that iron is involved in effective muscle regeneration, highlighting the importance of iron homeostasis in muscle atrophy and muscle repair.
  • Item
    Thumbnail Image
    Ferroptosis as a mechanism of neurodegeneration in Alzheimer's disease
    Jakaria, M ; Belaidi, AA ; Bush, AI ; Ayton, S (WILEY, 2021-12)
    Alzheimer's disease (AD) is the most prevalent form of dementia, with complex pathophysiology that is not fully understood. While β-amyloid plaque and neurofibrillary tangles define the pathology of the disease, the mechanism of neurodegeneration is uncertain. Ferroptosis is an iron-mediated programmed cell death mechanism characterised by phospholipid peroxidation that has been observed in clinical AD samples. This review will outline the growing molecular and clinical evidence implicating ferroptosis in the pathogenesis of AD, with implications for disease-modifying therapies.
  • Item
    Thumbnail Image
    Iron reduces the propagation of pathological α-synuclein An Editorial Highlight for "Brain iron enrichment attenuates α-synuclein spreading after injection of preformed fibrils"
    Guo, Y-J ; Ayton, S ; Lei, P (WILEY, 2021-11)
    Iron accumulation and α-synuclein aggregates (e.g., Lewy bodies) have been linked with the pathogenesis of Parkinson's disease (PD), with yet-to-be-determined interaction. Previous studies have indicated that iron binds to α-synuclein and triggers its aggregation in vitro, and iron is found enriched in Lewy bodies. In the current study, Joppe et al. have found that the propagation of pathological α-synuclein caused by intrastriatal α-synuclein preformed fibrils (PFFs) injection was unexpectedly attenuated in rodent brains in a model of brain iron elevation (neonatal iron feeding). PFFs stimulated microglial activation was also reduced in mice with elevated iron. These results may provide new insight into the complex interaction between these two key pathologies of PD.