Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Redox active metals in neurodegenerative diseases
    Acevedo, K ; Masaldan, S ; Opazo, CM ; Bush, AI (SPRINGER, 2019-12)
    Copper (Cu) and iron (Fe) are redox active metals essential for the regulation of cellular pathways that are fundamental for brain function, including neurotransmitter synthesis and release, neurotransmission, and protein turnover. Cu and Fe are tightly regulated by sophisticated homeostatic systems that tune the levels and localization of these redox active metals. The regulation of Cu and Fe necessitates their coordination to small organic molecules and metal chaperone proteins that restrict their reactions to specific protein centres, where Cu and Fe cycle between reduced (Fe2+, Cu+) and oxidised states (Fe3+, Cu2+). Perturbation of this regulation is evident in the brain affected by neurodegeneration. Here we review the evidence that links Cu and Fe dyshomeostasis to neurodegeneration as well as the promising preclinical and clinical studies reporting pharmacological intervention to remedy Cu and Fe abnormalities in the treatment of Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS).
  • Item
    Thumbnail Image
    Elevated ubiquitinated proteins in brain and blood of individuals with schizophrenia
    Bousman, CA ; Luza, S ; Mancuso, SG ; Kang, D ; Opazo, CM ; Mostaid, MS ; Cropley, V ; McGorry, P ; Weickert, CS ; Pantelis, C ; Bush, AI ; Everall, IP (NATURE PORTFOLIO, 2019-02-19)
    Dysregulation of the ubiquitin proteasome system (UPS) has been linked to schizophrenia but it is not clear if this dysregulation is detectable in both brain and blood. We examined free mono-ubiquitin, ubiquitinated proteins, catalytic ubiquitination, and proteasome activities in frozen postmortem OFC tissue from 76 (38 schizophrenia, 38 control) matched individuals, as well as erythrocytes from 181 living participants, who comprised 30 individuals with recent onset schizophrenia (mean illness duration = 1 year), 63 individuals with 'treatment-resistant' schizophrenia (mean illness duration = 17 years), and 88 age-matched participants without major psychiatric illness. Ubiquitinated protein levels were elevated in postmortem OFC in schizophrenia compared to controls (p = <0.001, AUC = 74.2%). Similarly, individuals with 'treatment-resistant' schizophrenia had higher levels of ubiquitinated proteins in erythrocytes compared to those with recent onset schizophrenia (p < 0.001, AUC = 65.5%) and controls (p < 0.001, AUC = 69.4%). The results could not be better explained by changes in proteasome activity, demographic, medication, or tissue factors. Our results suggest that ubiquitinated protein formation may be abnormal in both the brain and erythrocytes of those with schizophrenia, particularly in the later stages or specific sub-groups of the illness. A derangement in protein ubiquitination may be linked to pathogenesis or neurotoxicity in schizophrenia, and its manifestation in the blood may have prognostic utility.