Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 17
  • Item
    Thumbnail Image
    CuII(atsm) inhibits ferroptosis: Implications for treatment of neurodegenerative disease
    Southon, A ; Szostak, K ; Acevedo, KM ; Dent, KA ; Volitakis, I ; Belaidi, AA ; Barnham, KJ ; Crouch, PJ ; Ayton, S ; Donnelly, PS ; Bush, A (WILEY, 2020-02)
    BACKGROUND AND PURPOSE: Diacetyl-bis(4-methyl-3-thiosemicarbazonato)copperII (CuII (atsm)) ameliorates neurodegeneration and delays disease progression in mouse models of amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD), yet the mechanism of action remains uncertain. Promising results were recently reported for separate Phase 1 studies in ALS patients and PD patients. Affected tissue in these disorders shares features of elevated Fe, low glutathione and increased lipid peroxidation consistent with ferroptosis, a novel form of regulated cell death. We therefore evaluated the ability of CuII (atsm) to inhibit ferroptosis. EXPERIMENTAL APPROACH: Ferroptosis was induced in neuronal cell models by inhibition of glutathione peroxidase-4 activity with RSL3 or by blocking cystine uptake with erastin. Cell viability and lipid peroxidation were assessed and the efficacy of CuII (atsm) was compared to the known antiferroptotic compound liproxstatin-1. KEY RESULTS: CuII (atsm) protected against lipid peroxidation and ferroptotic lethality in primary and immortalised neuronal cell models (EC50 : ≈130 nM, within an order of magnitude of liproxstatin-1). NiII (atsm) also prevented ferroptosis with similar potency, whereas ionic CuII did not. In cell-free systems, CuII (atsm) and NiII (atsm) inhibited FeII -induced lipid peroxidation, consistent with these compounds quenching lipid radicals. CONCLUSIONS AND IMPLICATIONS: The antiferroptotic activity of CuII (atsm) could therefore be the disease-modifying mechanism being tested in ALS and PD trials. With potency in vitro approaching that of liproxstatin-1, CuII (atsm) possesses favourable properties such as oral bioavailability and entry into the brain that make it an attractive investigational product for clinical trials of ferroptosis-related diseases.
  • Item
    Thumbnail Image
    The Down Syndrome-Associated Protein, Regulator of Calcineurin-1, is Altered in Alzheimer's Disease and Dementia with Lewy Bodies
    Malakooti, N ; FOWLER, C ; Volitakis, I ; McLean, CA ; Kim, RC ; Bush, A ; REMBACH, A ; PRITCHARD, MA ; Finkelstein, DI ; Adlard, PA (OMICS International, 2019)
    There is a known relationship between Alzheimer's disease (AD) and Down syndrome (DS), with the latter typically developing AD-like neuropathology in mid-life. In order to further understand this relationship we examined intersectin-1 (ITSN1) and the regulator of calcineurin-1 (RCAN1), proteins involved in endosomal and lysosomal trafficking that are over-expressed in DS. We examined RCAN1 and ITSN1 levels (both long (-L) and short (-S) isoforms) and the level of endogenous metals in White Blood Cells (WBCs) collected from AD patients who were enrolled in the Australian Imaging, Biomarker and Lifestyle Study on Ageing (AIBL). We also examined RCAN1 and ITSN1-S and -L in post-mortem brain tissue in a separate cohort of patients with AD or other types of dementia including Dementia with Lewy Bodies (DLB) and non-Alzheimer's disease dementia. We found that RCAN1 was significantly elevated in AD and DLB brain compared with controls, but there was no difference in the level of RCAN1 in WBCs of AD patients. There were no differences in the levels of ITSN1-L and -S between AD and the control, nor between other types of dementia and the control. We found that there were no differences in the levels of metals between AD and the control WBCs. In conclusion, our data demonstrate that RCAN1 is differentially regulated between the peripheral and central compartments in AD and should be further investigated to understand its potential role in dementia of AD and DLB.
  • Item
    Thumbnail Image
    Zn-DTSM, A Zinc Ionophore with Therapeutic Potential for Acrodermatitis Enteropathica?
    Bray, L ; Volitakis, I ; Ayton, S ; Bush, AI ; Adlard, PA (MDPI, 2019-01)
    Acrodermatitis enteropathica (AE) is a rare disease characterised by a failure in intestinal zinc absorption, which results in a host of symptoms that can ultimately lead to death if left untreated. Current clinical treatment involves life-long high-dose zinc supplements, which can introduce complications for overall nutrient balance in the body. Previous studies have therefore explored the pharmacological treatment of AE utilising metal ionophore/transport compounds in an animal model of the disease (conditional knockout (KO) of the zinc transporter, Zip4), with the perspective of finding an alternative to zinc supplementation. In this study we have assessed the utility of a different class of zinc ionophore compound (zinc diethyl bis(N4-methylthiosemicarbazone), Zn-DTSM; Collaborative Medicinal Development, Sausalito, CA, USA) to the one we have previously described (clioquinol), to determine whether it is effective at preventing the stereotypical weight loss present in the animal model of disease. We first utilised an in vitro assay to assess the ionophore capacity of the compound, and then assessed the effect of the compound in three in vivo animal studies (in 1.5-month-old mice at 30 mg/kg/day, and in 5-month old mice at 3 mg/kg/day and 30 mg/kg/day). Our data demonstrate that Zn-DTSM has a pronounced effect on preventing weight loss when administered daily at 30 mg/kg/day; this was apparent in the absence of any added exogenous zinc. This compound had little overall effect on zinc content in various tissues that were assessed, although further characterisation is required to more fully explore the cellular changes underlying the physiological benefit of this compound. These data suggest that Zn-DTSM, or similar compounds, should be further explored as potential therapeutic options for the long-term treatment of AE.
  • Item
    No Preview Available
    Ionophore and Biometal Modulation of P-glycoprotein Expression and Function in Human Brain Microvascular Endothelial Cells
    McInerney, MP ; Volitakis, I ; Bush, AI ; Banks, WA ; Short, JL ; Nicolazzo, JA (SPRINGER/PLENUM PUBLISHERS, 2018-04)
    PURPOSE: Biometals such as zinc and copper have been shown to affect tight junction expression and subsequently blood-brain barrier (BBB) integrity. Whether these biometals also influence the expression and function of BBB transporters such as P-glycoprotein (P-gp) however is currently unknown. METHODS: Using the immortalised human cerebral microvascular endothelial (hCMEC/D3) cell line, an in-cell western assay (alongside western blotting) assessed relative P-gp expression after treatment with the metal ionophore clioquinol and biometals zinc and copper. The fluorescent P-gp substrate rhodamine-123 was employed to observe functional modulation, and inductively coupled plasma mass spectrometry (ICP-MS) provided information on biometal trafficking. RESULTS: A 24-h treatment with clioquinol, zinc and copper (0.5, 0.5 and 0.1 μM) induced a significant upregulation of P-gp (1.7-fold) assessed by in-cell western and this was confirmed with western blotting (1.8-fold increase). This same treatment resulted in a 23% decrease in rhodamine-123 accumulation over a 1 h incubation. ICP-MS demonstrated that while t8his combination treatment had no effect on intracellular zinc concentrations, the treatment significantly enhanced bioavailable copper (4.6-fold). CONCLUSIONS: Enhanced delivery of copper to human brain microvascular endothelial cells is associated with enhanced expression and function of the important efflux pump P-gp, which may provide therapeutic opportunities for P-gp modulation.
  • Item
    Thumbnail Image
    Rubidium and potassium levels are altered in Alzheimer's disease brain and blood but not in cerebrospinal fluid
    Roberts, BR ; Doecke, JD ; Rembach, A ; Yevenes, LF ; Fowler, CJ ; McLean, CA ; Lind, M ; Volitakis, I ; Masters, CL ; Bush, AI ; Hare, DJ (BMC, 2016-11-14)
    Loss of intracellular compartmentalization of potassium is a biochemical feature of Alzheimer's disease indicating a loss of membrane integrity and mitochondrial dysfunction. We examined potassium and rubidium (a biological proxy for potassium) in brain tissue, blood fractions and cerebrospinal fluid from Alzheimer's disease and healthy control subjects to investigate the diagnostic potential of these two metal ions. We found that both potassium and rubidium levels were significantly decreased across all intracellular compartments in the Alzheimer's disease brain. Serum from over 1000 participants in the Australian Imaging, Biomarkers and Lifestyle Flagship Study of Ageing (AIBL), showed minor changes according to disease state. Potassium and rubidium levels in erythrocytes and cerebrospinal fluid were not significantly different according to disease state, and rubidium was slightly decreased in Alzheimer's disease patients compared to healthy controls. Our data provides evidence that contrasts the hypothesized disruption of the blood-brain barrier in Alzheimer's disease, with the systemic decrease in cortical potassium and rubidium levels suggesting influx of ions from the blood is minimal and that the observed changes are more likely indicative of an internal energy crisis within the brain. These findings may be the basis for potential diagnostic imaging studies using radioactive potassium and rubidium tracers.
  • Item
    Thumbnail Image
    The effect of paraformaldehyde fixation and sucrose cryoprotection on metal concentration in murine neurological tissue
    Hare, DJ ; George, JL ; Bray, L ; Volitakis, I ; Vais, A ; Ryan, TM ; Cherny, RA ; Bush, AI ; Masters, CL ; Adlard, PA ; Doble, PA ; Finkelstein, DI (ROYAL SOC CHEMISTRY, 2014-03)
  • Item
    Thumbnail Image
    Lithium suppression of tau induces brain iron accumulation and neurodegeneration
    Lei, P ; Ayton, S ; Appukuttan, AT ; Moon, S ; Duce, JA ; Volitakis, I ; Cherny, R ; Wood, SJ ; Greenough, M ; Berger, G ; Pantelis, C ; McGorry, P ; Yung, A ; Finkelstein, DI ; Bush, AI (NATURE PUBLISHING GROUP, 2017-03)
    Lithium is a first-line therapy for bipolar affective disorder. However, various adverse effects, including a Parkinson-like hand tremor, often limit its use. The understanding of the neurobiological basis of these side effects is still very limited. Nigral iron elevation is also a feature of Parkinsonian degeneration that may be related to soluble tau reduction. We found that magnetic resonance imaging T2 relaxation time changes in subjects commenced on lithium therapy were consistent with iron elevation. In mice, lithium treatment lowers brain tau levels and increases nigral and cortical iron elevation that is closely associated with neurodegeneration, cognitive loss and parkinsonian features. In neuronal cultures lithium attenuates iron efflux by lowering tau protein that traffics amyloid precursor protein to facilitate iron efflux. Thus, tau- and amyloid protein precursor-knockout mice were protected against lithium-induced iron elevation and neurotoxicity. These findings challenge the appropriateness of lithium as a potential treatment for disorders where brain iron is elevated (for example, Alzheimer's disease), and may explain lithium-associated motor symptoms in susceptible patients.
  • Item
    Thumbnail Image
    Altered transition metal homeostasis in Niemann-Pick disease, type C1
    Hung, YH ; Faux, NG ; Killilea, DW ; Yanjanin, N ; Firnkes, S ; Volitakis, I ; Ganio, G ; Walterfang, M ; Hastings, C ; Porter, FD ; Ory, DS ; Bush, AI (OXFORD UNIV PRESS, 2014)
    The loss of NPC1 protein function is the predominant cause of Niemann-Pick type C1 disease (NP-C1), a systemic and neurodegenerative disorder characterized by late-endosomal/lysosomal accumulation of cholesterol and other lipids. Limited evidence from post-mortem human tissues, an Npc1(-/-) mouse model, and cell culture studies also suggest failure of metal homeostasis in NP-C1. To investigate these findings, we performed a comprehensive transition metal analysis of cerebrospinal fluid (CSF), plasma and tissue samples from human NP-C1 patients and an Npc1(-/-) mouse model. NPC1 deficiency in the Npc1(-/-) mouse model resulted in a perturbation of transition metal homeostasis in the plasma and key organs (brain, liver, spleen, heart, lungs, and kidneys). Analysis of human patient CSF, plasma and post-mortem brain tissues also indicated disrupted metal homeostasis. There was a disparity in the direction of metal changes between the human and the Npc1(-/-) mouse samples, which may reflect species-specific metal metabolism. Nevertheless, common to both species is brain zinc accumulation. Furthermore, treatment with the glucosylceramide synthase inhibitor miglustat, the only drug shown in a controlled clinical trial to have some efficacy for NP-C1, did not correct the alterations in CSF and plasma transition metal and ceruloplasmin (CP) metabolism in NP-C1 patients. These findings highlight the importance of NPC1 function in metal homeostasis, and indicate that metal-targeting therapy may be of value as a treatment for NP-C.
  • Item
    Thumbnail Image
    Lead and manganese levels in serum and erythrocytes in Alzheimer's disease and mild cognitive impairment: results from the Australian Imaging, Biomarkers and Lifestyle Flagship Study of Ageing
    Hare, DJ ; Faux, NG ; Roberts, BR ; Volitakis, I ; Martins, RN ; Bush, AI (OXFORD UNIV PRESS, 2016)
    We examined serum and erythrocyte lead and manganese levels in the Australian Imaging, Biomarkers and Lifestyle Flagship Study of Ageing (AIBL), which contains over 1000 registrants including over 200 cases of Alzheimer's disease (AD) and 100 mildly cognitively impaired (MCI) individuals. After correcting for confounding effects of age, collection site and sex, we found a significant decrease in serum manganese levels in AD subjects compared to healthy controls. Analysis of smaller subset of erythrocytes revealed no difference in either lead or manganese levels in AD. Although lead and manganese have neurotoxic effects and may be involved in AD pathology, our results showed that neither metal in serum nor erythrocytes are suitable biomarkers in our cohort. However, prospective studies might reveal whether the burden of either metal modifies disease outcomes.
  • Item
    Thumbnail Image
    Enduring Elevations of Hippocampal Amyloid Precursor Protein and Iron Are Features of β-Amyloid Toxicity and Are Mediated by Tau
    Li, X ; Lei, P ; Tuo, Q ; Ayton, S ; Li, Q-X ; Moon, S ; Volitakis, I ; Liu, R ; Masters, CL ; Finkelstein, DI ; Bush, AI (SPRINGER, 2015-10)
    The amyloid cascade hypothesis of Alzheimer's disease (AD) positions tau protein as a downstream mediator of β-amyloid (Aβ) toxicity This is largely based on genetic cross breeding, which showed that tau ablation in young (3-7-month-old) transgenic mice overexpressing mutant amyloid precursor protein (APP) abolished the phenotype of the APP AD model. This evidence is complicated by the uncertain impact of overexpressing mutant APP, rather than Aβ alone, and for potential interactions between tau and overexpressed APP. Cortical iron elevation is also implicated in AD, and tau promotes iron export by trafficking APP to the neuronal surface. Here, we utilized an alternative model of Aβ toxicity by directly injecting Aβ oligomers into the hippocampus of young and old wild-type and tau knockout mice. We found that ablation of tau protected against Aβ-induced cognitive impairment, hippocampal neuron loss, and iron accumulation. Despite injected human Aβ being eliminated after 5 weeks, enduring changes, including increased APP levels, tau reduction, tau phosphorylation, and iron accumulation, were observed. While the results from our study support the amyloid cascade hypothesis, they also suggest that downstream effectors of Aβ, which propagate toxicity after Aβ has been cleared, may be tractable therapeutic targets.