Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Paradoxical effects of exercise on hippocampal plasticity and cognition in mice with a heterozygous null mutation in the serotonin transporter gene
    Rogers, J ; Chen, F ; Stanic, D ; Farzana, F ; Li, S ; Zeleznikow-Johnston, AM ; Nithianantharajah, J ; Churilov, IL ; Adlard, PA ; Lanfumey, L ; Hannan, AJ ; Renoir, T (WILEY, 2019-09)
    BACKGROUND AND PURPOSE: Exercise is known to improve cognitive function, but the exact synaptic and cellular mechanisms remain unclear. We investigated the potential role of the serotonin (5-HT) transporter (SERT) in mediating these effects. EXPERIMENTAL APPROACH: Hippocampal long-term potentiation (LTP) and neurogenesis were measured in standard-housed and exercising (wheel running) wild-type (WT) and SERT heterozygous (HET) mice. We also assessed hippocampal-dependent cognition using the Morris water maze (MWM) and a spatial pattern separation touchscreen task. KEY RESULTS: SERT HET mice had impaired hippocampal LTP regardless of the housing conditions. Exercise increased hippocampal neurogenesis in WT mice. However, this was not observed in SERT HET animals, even though both genotypes used the running wheels to a similar extent. We also found that standard-housed SERT HET mice displayed altered cognitive flexibility than WT littermate controls in the MWM reversal learning task. However, SERT HET mice no longer exhibited this phenotype after exercise. Cognitive changes, specific to SERT HET mice in the exercise condition, were also revealed on the touchscreen spatial pattern separation task, especially when the cognitive pattern separation load was at its highest. CONCLUSIONS AND IMPLICATIONS: Our study is the first evidence of reduced hippocampal LTP in SERT HET mice. We also show that functional SERT is required for exercise-induced increase in adult neurogenesis. Paradoxically, exercise had a negative impact on hippocampal-dependent cognitive tasks, especially in SERT HET mice. Taken together, our results suggest unique complex interactions between exercise and altered 5-HT homeostasis.
  • Item
    Thumbnail Image
    Touchscreen testing reveals clinically relevant cognitive abnormalities in a mouse model of schizophrenia lacking metabotropic glutamate receptor 5
    Zeleznikow-Johnston, AM ; Renoir, T ; Churilov, L ; Li, S ; Burrows, EL ; Hannan, AJ (NATURE PORTFOLIO, 2018-11-06)
    Metabotropic glutamate receptor 5 (mGlu5) has been implicated in certain forms of synaptic plasticity and cognitive function. mGlu5 knockout (KO) mice and mGlu5 antagonists have been previously used to study the pathophysiology of schizophrenia as they have been shown respectively to display or induce endophenotypes relevant to schizophrenia. While schizophrenia presents with generalized cognitive impairments, the cognitive phenotype of mice lacking mGlu5 has so far only been explored using largely hippocampal-dependent spatial and contextual memory tasks. To address this, we used a touchscreen system to assess mGlu5 KO mice for pairwise visual discrimination, reversal learning, and extinction of an instrumental response requiring no discrimination. Furthermore, we tested the role of mGlu5 in working memory using the Trial-Unique Non-Matching to Location (TUNL) task utilizing pharmacological ablation. mGlu5 KO mice were impaired on discrimination learning, taking longer to reach criterion and requiring more correction learning trials. Performance on reversal learning was also impaired, with mGlu5 KO mice demonstrating a perseverative phenotype. The mGlu5 KO mice responded at a higher rate during extinction, consistent with this perseverative profile. In contrast, wildtype mice treated acutely with an mGlu5 antagonist (MTEP) showed no deficits in a touchscreen task assessing working memory. The present study demonstrates learning and memory deficits as well as an increased perseverative phenotype following constitutive loss of mGlu5 in this mouse model of schizophrenia. These findings will inform translational approaches using this preclinical model and the pursuit of mGlu5 as therapeutic target for schizophrenia and other brain disorders.