Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 14
  • Item
    No Preview Available
    Healthy Life-Year Costs of Treatment Speed From Arrival to Endovascular Thrombectomy in Patients With Ischemic Stroke A Meta-analysis of Individual Patient Data From 7 Randomized Clinical Trials
    Almekhlafi, MA ; Goyal, M ; Dippel, DWJ ; Majoie, CBLM ; Campbell, BCV ; Muir, KW ; Demchuk, AM ; Bracard, S ; Guillemin, F ; Jovin, TG ; Mitchell, P ; White, P ; Hill, MD ; Brown, S ; Saver, JL (AMER MEDICAL ASSOC, 2021-06)
    IMPORTANCE: The benefits of endovascular thrombectomy (EVT) are time dependent. Prior studies may have underestimated the time-benefit association because time of onset is imprecisely known. OBJECTIVE: To assess the lifetime outcomes associated with speed of endovascular thrombectomy in patients with acute ischemic stroke due to large-vessel occlusion (LVO). DATA SOURCES: PubMed was searched for randomized clinical trials of stent retriever thrombectomy devices vs medical therapy in patients with anterior circulation LVO within 12 hours of last known well time, and for which a peer-reviewed, complete primary results article was published by August 1, 2020. STUDY SELECTION: All randomized clinical trials of stent retriever thrombectomy devices vs medical therapy in patients with anterior circulation LVO within 12 hours of last known well time were included. DATA EXTRACTION/SYNTHESIS: Patient-level data regarding presenting clinical and imaging features and functional outcomes were pooled from the 7 retrieved randomized clinical trials of stent retriever thrombectomy devices (entirely or predominantly) vs medical therapy. All 7 identified trials published in a peer-reviewed journal (by August 1, 2020) contributed data. Detailed time metrics were collected including last known well-to-door (LKWTD) time; last known well/onset-to-puncture (LKWTP) time; last known well-to-reperfusion (LKWR) time; door-to-puncture (DTP) time; and door-to-reperfusion (DTR) time. MAIN OUTCOMES AND MEASURES: Change in healthy life-years measured as disability-adjusted life-years (DALYs). DALYs were calculated as the sum of years of life lost (YLL) owing to premature mortality and years of healthy life lost because of disability (YLD). Disability weights were assigned using the utility-weighted modified Rankin Scale. Age-specific life expectancies without stroke were calculated from 2017 US National Vital Statistics. RESULTS: Among the 781 EVT-treated patients, 406 (52.0%) were early-treated (LKWTP ≤4 hours) and 375 (48.0%) were late-treated (LKWTP >4-12 hours). In early-treated patients, LKWTD was 188 minutes (interquartile range, 151.3-214.8 minutes) and DTP 105 minutes (interquartile range, 76-135 minutes). Among the 298 of 380 (78.4%) patients with substantial reperfusion, median DTR time was 145.0 minutes (interquartile range, 111.5-185.5 minutes). Care process delays were associated with worse clinical outcomes in LKW-to-intervention intervals in early-treated patients and in door-to-intervention intervals in early-treated and late-treated patients, and not associated with LKWTD intervals, eg, in early-treated patients, for each 10-minute delay, healthy life-years lost were DTP 1.8 months vs LKWTD 0.0 months; P < .001. Considering granular time increments, the amount of healthy life-time lost associated with each 1 second of delay was DTP 2.2 hours and DTR 2.4 hours. CONCLUSIONS AND RELEVANCE: In this study, care delays were associated with loss of healthy life-years in patients with acute ischemic stroke treated with EVT, particularly in the postarrival time period. The finding that every 1 second of delay was associated with loss of 2.2 hours of healthy life may encourage continuous quality improvement in door-to-treatment times.
  • Item
    Thumbnail Image
    Progressive impairments in executive function in the APP/PS1 model of Alzheimer's disease as measured by translatable touchscreen testing
    Shepherd, A ; Lim, JKH ; Wong, VHY ; Zeleznikow-Johnston, AM ; Churilov, L ; Nguyen, CTO ; V. Bui, B ; Hannan, AJ ; Burrows, EL (ELSEVIER SCIENCE INC, 2021-12)
    Executive function deficits in Alzheimer's disease (AD) occur early in disease progression and may be predictive of cognitive decline. However, no preclinical studies have identified deficits in rewarded executive function in the commonly used APPSwe/PS1∆E9 (APP/PS1) mouse model. To address this, we assessed 12-26 month old APP/PS1 mice on rewarded reversal and/or extinction tasks. 16-month-old, but not 13- or 26-month-old, APP/PS1 mice showed an attenuated rate of extinction. Reversal deficits were seen in 22-month-old, but not 13-month-old APP/PS1 animals. We then confirmed that impairments in reversal were unrelated to previously reported visual impairments in both AD mouse models and humans. Age, but not genotype, had a significant effect on markers of retinal health, indicating the deficits seen in APP/PS1 mice were directly related to cognition. This is the first characterisation of rewarded executive function in APP/PS1 mice, and has great potential to facilitate translation from preclinical models to the clinic.
  • Item
    Thumbnail Image
    Neurodegeneration Over 3 Years Following Ischaemic Stroke: Findings From the Cognition and Neocortical Volume After Stroke Study
    Brodtmann, A ; Werden, E ; Khlif, MS ; Bird, LJ ; Egorova, N ; Veldsman, M ; Pardoe, H ; Jackson, G ; Bradshaw, J ; Darby, D ; Cumming, T ; Churilov, L ; Donnan, G (FRONTIERS MEDIA SA, 2021-10-22)
    Background: Stroke survivors are at high risk of dementia, associated with increasing age and vascular burden and with pre-existing cognitive impairment, older age. Brain atrophy patterns are recognised as signatures of neurodegenerative conditions, but the natural history of brain atrophy after stroke remains poorly described. We sought to determine whether stroke survivors who were cognitively normal at time of stroke had greater total brain (TBV) and hippocampal volume (HV) loss over 3 years than controls. We examined whether stroke survivors who were cognitively impaired (CI) at 3 months following their stroke had greater brain volume loss than cognitively normal (CN) stroke participants over the next 3 years. Methods: Cognition And Neocortical Volume After Stroke (CANVAS) study is a multi-centre cohort study of first-ever or recurrent adult ischaemic stroke participants compared to age- and sex-matched community controls. Participants were followed with MRI and cognitive assessments over 3 years and were free of a history of cognitive impairment or decline at inclusion. Our primary outcome measure was TBV change between 3 months and 3 years; secondary outcomes were TBV and HV change comparing CI and CN participants. We investigated associations between group status and brain volume change using a baseline-volume adjusted linear regression model with robust standard error. Results: Ninety-three stroke (26 women, 66.7 ± 12 years) and 39 control participants (15 women, 68.7 ± 7 years) were available at 3 years. TBV loss in stroke patients was greater than controls: stroke mean (M) = 20.3 cm3 ± SD 14.8 cm3; controls M = 14.2 cm3 ± SD 13.2 cm3; [adjusted mean difference 7.88 95%CI (2.84, 12.91) p-value = 0.002]. TBV decline was greater in those stroke participants who were cognitively impaired (M = 30.7 cm3; SD = 14.2 cm3) at 3 months (M = 19.6 cm3; SD = 13.8 cm3); [adjusted mean difference 10.42; 95%CI (3.04, 17.80), p-value = 0.006]. No statistically significant differences in HV change were observed. Conclusions: Ischaemic stroke survivors exhibit greater neurodegeneration compared to stroke-free controls. Brain atrophy is greater in stroke participants who were cognitively impaired early after their stroke. Early cognitive impairment was associated greater subsequent atrophy, reflecting the combined impacts of stroke and vascular brain burden. Atrophy rates could serve as a useful biomarker for trials testing interventions to reduce post-stroke secondary neurodegeneration. Clinical Trail Registration: http://www.clinicaltrials.gov, identifier: NCT02205424.
  • Item
    Thumbnail Image
    A Preclinical Model of Computerized Cognitive Training: Touchscreen Cognitive Testing Enhances Cognition and Hippocampal Cellular Plasticity in Wildtype and Alzheimer's Disease Mice
    Shepherd, A ; Zhang, T ; Hoffmann, LB ; Zeleznikow-Johnston, AM ; Churilov, L ; Hannan, AJ ; Burrows, EL (FRONTIERS MEDIA SA, 2021-12-06)
    With the growing popularity of touchscreen cognitive testing in rodents, it is imperative to understand the fundamental effects exposure to this paradigm can have on the animals involved. In this study, we set out to assess hippocampal-dependant learning in the APP/PS1 mouse model of Alzheimer's disease (AD) on two highly translatable touchscreen tasks - the Paired Associate Learning (PAL) task and the Trial Unique Non-Matching to Location (TUNL) task. Both of these tests are based on human tasks from the Cambridge Neuropsychological Test Automated Battery (CANTAB) and are sensitive to deficits in both mild cognitive impairment (MCI) and AD. Mice were assessed for deficits in PAL at 9-12 months of age, then on TUNL at 8-11 and 13-16 months. No cognitive deficits were evident in APP/PS1 mice at any age, contrary to previous reports using maze-based learning and memory tasks. We hypothesized that daily and long-term touchscreen training may have inadvertently acted as a cognitive enhancer. When touchscreen-tested mice were assessed on the Morris water maze, they showed improved task acquisition compared to naïve APP/PS1 mice and wild-type (WT) littermate controls. In addition, we show that touchscreen-trained WT and APP/PS1 mice show increased cell proliferation and immature neuron numbers in the dentate gyrus compared to behaviorally naïve WT and APP/PS1 mice. This result indicates that the touchscreen testing paradigm could improve cognitive performance, and/or mask an impairment, in experimental mouse models. This touchscreen-induced cognitive enhancement may involve increased neurogenesis, and possibly other forms of cellular plasticity. This is the first study to show increased numbers of proliferating cells and immature neurons in the hippocampus following touchscreen testing, and that touchscreen training can improve cognitive performance in maze-based spatial navigation tasks. This potential for touchscreen testing to induce cognitive enhancement, or other phenotypic shifts, in preclinical models should be considered in study design. Furthermore, touchscreen-mediated cognitive enhancement could have therapeutic implications for cognitive disorders.
  • Item
    Thumbnail Image
    Evaluation of attention in APP/PS1 mice shows impulsive and compulsive behaviours
    Shepherd, A ; May, C ; Churilov, L ; Adlard, PA ; Hannan, AJ ; Burrows, EL (WILEY, 2021-01)
    While Alzheimer's disease (AD) is traditionally associated with deficits in episodic memory, early changes in other cognitive domains, such as attention, have been gaining interest. In line with clinical observations, some animal models of AD have been shown to develop attentional deficits, but this is not consistent across all models. The APPswe/PS1ΔE9 (APP/PS1) mouse is one of the most commonly used AD models and attention has not yet been scrutinised in this model. We set out to assess attention using the 5-choice serial reaction time task (5CSRTT) early in the progression of cognitive symptoms in APP/PS1 mice, using clinically translatable touchscreen chambers. APP/PS1 mice showed no attentional changes across 5CSRTT training or any probes from 9 to 11 months of age. Interestingly, APP/PS1 mice showed increased impulsive and compulsive responding when task difficulty was high. This suggests that while the APP/PS1 mouse model may not be a good model of attentional changes in AD, it may be useful to study the early changes in impulsive and compulsive behaviour that have been identified in patient studies. As these changes have not previously been reported without attentional deficits in the clinic, the APP/PS1 mouse model may provide a unique opportunity to study these specific behavioural changes seen in AD, including their mechanistic underpinnings and therapeutic implications.
  • Item
    No Preview Available
    Fatal and Nonfatal Events Within 14 days After Early, Intensive Mobilization Poststroke
    Bernhardt, J ; Borschmann, K ; Collier, JM ; Thrift, AG ; Langhorne, P ; Middleton, S ; Lindley, RI ; Dewey, HM ; Bath, P ; Said, CM ; Churilov, L ; Ellery, F ; Bladin, C ; Reid, CM ; Frayne, JH ; Srikanth, V ; Read, SJ ; Donnan, GA (LIPPINCOTT WILLIAMS & WILKINS, 2021-02-23)
    OBJECTIVE: This tertiary analysis from A Very Early Rehabilitation Trial (AVERT) examined fatal and nonfatal serious adverse events (SAEs) at 14 days. METHOD: AVERT was a prospective, parallel group, assessor blinded, randomized international clinical trial comparing mobility training commenced <24 hours poststroke, termed very early mobilization (VEM), to usual care (UC). Primary outcome was assessed at 3 months. Patients with ischemic or hemorrhagic stroke within 24 hours of onset were included. Treatment with thrombolytics was allowed. Patients with severe premorbid disability or comorbidities were excluded. Interventions continued for 14 days or hospital discharge if less. The primary early safety outcome was fatal SAEs within 14 days. Secondary outcomes were nonfatal SAEs classified as neurologic, immobility-related, and other. Mortality influences were assessed using binary logistic regression adjusted for baseline stroke severity (NIH Stroke Scale [NIHSS] score) and age. RESULTS: A total of 2,104 participants were randomized to VEM (n = 1,054) or UC (n = 1,050) with a median age of 72 years (interquartile range [IQR] 63-80) and NIHSS 7 (IQR 4-12). By 14 days, 48 had died in VEM, 32 in UC, age and stroke severity adjusted odds ratio of 1.76 (95% confidence interval 1.06-2.92, p = 0.029). Stroke progression was more common in VEM. Exploratory subgroup analyses showed higher odds of death in intracerebral hemorrhage and >80 years subgroups, but there was no significant treatment by subgroup interaction. No difference in nonfatal SAEs was found. CONCLUSION: While the overall case fatality at 14 days poststroke was only 3.8%, mortality adjusted for age and stroke severity was increased with high dose and intensive training compared to usual care. Stroke progression was more common in VEM. REGISTRATION: Australian New Zealand Clinical Trials Registry, ACTRN12606000185561. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that very early mobilization increases mortality at 14 days poststroke.
  • Item
    Thumbnail Image
    Longitudinal hippocampal volumetric changes in mice following brain infarction
    Brait, VH ; Wright, DK ; Nategh, M ; Oman, A ; Syeda, WT ; Ermine, CM ; O'Brien, KR ; Werden, E ; Churilov, L ; Johnston, LA ; Thompson, LH ; Nithianantharajah, J ; Jackman, KA ; Brodtmann, A (NATURE PORTFOLIO, 2021-05-13)
    Hippocampal atrophy is increasingly described in many neurodegenerative syndromes in humans, including stroke and vascular cognitive impairment. However, the progression of brain volume changes after stroke in rodent models is poorly characterized. We aimed to monitor hippocampal atrophy occurring in mice up to 48-weeks post-stroke. Male C57BL/6J mice were subjected to an intraluminal filament-induced middle cerebral artery occlusion (MCAO). At baseline, 3-days, and 1-, 4-, 12-, 24-, 36- and 48-weeks post-surgery, we measured sensorimotor behavior and hippocampal volumes from T2-weighted MRI scans. Hippocampal volume-both ipsilateral and contralateral-increased over the life-span of sham-operated mice. In MCAO-subjected mice, different trajectories of ipsilateral hippocampal volume change were observed dependent on whether the hippocampus contained direct infarction, with a decrease in directly infarcted tissue and an increase in non-infarcted tissue. To further investigate these volume changes, neuronal and glial cell densities were assessed in histological brain sections from the subset of MCAO mice lacking hippocampal infarction. Our findings demonstrate previously uncharacterized changes in hippocampal volume and potentially brain parenchymal cell density up to 48-weeks in both sham- and MCAO-operated mice.
  • Item
    Thumbnail Image
    Early Mobilization After Stroke: Do Clinical Practice Guidelines Support Clinicians' Decision-Making?
    Rethnam, V ; Hayward, KS ; Bernhardt, J ; Churilov, L (FRONTIERS MEDIA SA, 2021-02-05)
    Importance: Early mobilization, out-of-bed activity, is a component of acute stroke unit care; however, stroke patient heterogeneity requires complex decision-making. Clinically credible and applicable CPGs are needed to support and optimize the delivery of care. In this study, we are specifically exploring the role of clinical practice guidelines to support individual patient-level decision-making by stroke clinicians about early mobilization post-stroke. Methods: Our study uses a novel, two-pronged approach. (1) A review of CPGs containing recommendations for early mobilization practices published after 2015 was appraised using purposely selected items from the Appraisal of Guidelines Research and Evaluation-Recommendations Excellence (AGREE-REX) tool relevant to decision-making for clinicians. (2) A cross-sectional study involving semi-structured interviews with Australian expert stroke clinicians representing content experts and CPG target users. Every CPG was independently assessed against the AGREE-REX standard by two reviewers. Expert stroke clinicians, invited via email, were recruited between June 2019 to March 2020.The main outcomes from the review was the proportion of criteria addressed for each AGREE-REX item by individual and all CPG(s). The main cross-sectional outcomes were the distributions of stroke clinicians' responses about the utility of CPGs, specific areas of uncertainty in early mobilization decision-making, and suggested parameters for inclusion in future early mobilization CPGs. Results: In 18 identified CPGs, many did not adequately address the "Evidence" and "Applicability to Patients" AGREE-REX items. Out of 30 expert stroke clinicians (11 physicians [37%], 11 physiotherapists [37%], 8 nurses [26%]; median [IQR] years of experience, 14 [10-25]), 47% found current CPGs "too broad or vague," while 40% rely on individual clinical judgement and interpretation of the evidence to select an evidence-based choice of action. The areas of uncertainty in decision-making revealed four key suggestions: (1) more granular descriptions of patient and stroke characteristics for appropriate tailoring of decisions, (2) clear statements about when clinical flexibility is appropriate, (3) detailed description of the intervention dose, and (4) physical assessment criteria including safety parameters. Conclusions: The lack of specificity, clinical applicability, and adaptability of current CPGs to effectively respond to the heterogeneous clinical stroke context has provided a clear direction for improvement.
  • Item
    Thumbnail Image
    Factors associated with improved walking in older people during hospital rehabilitation: secondary analysis of a randomized controlled trial
    Said, CM ; McGinley, JL ; Szoeke, C ; Workman, B ; Hill, KD ; Wittwer, JE ; Woodward, M ; Liew, D ; Churilov, L ; Bernhardt, J ; Morris, ME (BMC, 2021-01-31)
    BACKGROUND: Older people are often admitted for rehabilitation to improve walking, yet not everyone improves. The aim of this study was to determine key factors associated with a positive response to hospital-based rehabilitation in older people. METHODS: This was a secondary data analysis from a multisite randomized controlled trial. Older people (n= 198, median age 80.9 years, IQR 76.6- 87.2) who were admitted to geriatric rehabilitation wards with a goal to improve walking were recruited. Participants were randomized to receive additional daily physical therapy focused on mobility (n = 99), or additional social activities (n = 99). Self-selected gait speed was measured on admission and discharge. Four participants withdrew. People who changed gait speed ≥0.1 m/s were classified as 'responders' (n = 130); those that changed <0.1m/s were classified as 'non-responders' (n = 64). Multivariable logistic regression explored the association of six pre-selected participant factors (age, baseline ambulation status, frailty, co-morbidities, cognition, depression) and two therapy factors (daily supervised upright activity time, rehabilitation days) and response. RESULTS: Responding to rehabilitation was associated with the number of days in rehabilitation (OR 1.04; 95% CI 1.00 to 1.08; p = .039) and higher Mini Mental State Examination scores (OR 1.07, 95% CI 1.00 - 1.14; p = .048). No other factors were found to have association with responding to rehabilitation. CONCLUSION: In older people with complex health problems or multi-morbidities, better cognition and a longer stay in rehabilitation were associated with a positive improvement in walking speed. Further research to explore who best responds to hospital-based rehabilitation and what interventions improve rehabilitation outcomes is warranted. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12613000884707; ClinicalTrials.gov Identifier NCT01910740 .
  • Item
    Thumbnail Image
    In vivo microstructural heterogeneity of white matter lesions in healthy elderly and Alzheimer's disease participants using tissue compositional analysis of diffusion MRI data
    Mito, R ; Dhollander, T ; Xia, Y ; Raffelt, D ; Salvado, O ; Churilov, L ; Rowe, CC ; Brodtmann, A ; Villemagne, VL ; Connelly, A (ELSEVIER SCI LTD, 2020)
    White matter hyperintensities (WMH) are regions of high signal intensity typically identified on fluid attenuated inversion recovery (FLAIR). Although commonly observed in elderly individuals, they are more prevalent in Alzheimer's disease (AD) patients. Given that WMH appear relatively homogeneous on FLAIR, they are commonly partitioned into location- or distance-based classes when investigating their relevance to disease. Since pathology indicates that such lesions are often heterogeneous, probing their microstructure in vivo may provide greater insight than relying on such arbitrary classification schemes. In this study, we investigated WMH in vivo using an advanced diffusion MRI method known as single-shell 3-tissue constrained spherical deconvolution (SS3T-CSD), which models white matter microstructure while accounting for grey matter and CSF compartments. Diffusion MRI data and FLAIR images were obtained from AD (n = 48) and healthy elderly control (n = 94) subjects. WMH were automatically segmented, and classified: (1) as either periventricular or deep; or (2) into three distance-based contours from the ventricles. The 3-tissue profile of WMH enabled their characterisation in terms of white matter-, grey matter-, and fluid-like characteristics of the diffusion signal. Our SS3T-CSD findings revealed substantial heterogeneity in the 3-tissue profile of WMH, both within lesions and across the various classes. Moreover, this heterogeneity information indicated that the use of different commonly used WMH classification schemes can result in different disease-based conclusions. We conclude that future studies of WMH in AD would benefit from inclusion of microstructural information when characterising lesions, which we demonstrate can be performed in vivo using SS3T-CSD.