Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 12
  • Item
    No Preview Available
    Plasma neurofilament light chain and phosphorylated tau 181 in neurodegenerative and psychiatric disorders: moving closer towards a simple diagnostic test like a 'C‐reactive protein' for the brain?
    Eratne, D ; Santillo, A ; Li, Q ; Kang, M ; Keem, M ; Lewis, C ; Loi, SM ; Walterfang, M ; Hansson, O ; Janelidze, S ; Yassi, N ; Watson, R ; Berkovic, SF ; Masters, CL ; Collins, S ; Velakoulis, D (Wiley, 2021-12)
    Abstract Background Accurate, timely diagnosis of neurodegenerative disorders, in particular distinguishing primary psychiatric from neurological disorders and in younger people, can be challenging. There is a need for biomarkers to reduce the diagnostic odyssey and improve outcomes. Neurofilament light (NfL) has shown promise as a diagnostic biomarker in a wide range of disorders. Our Markers in Neuropsychiatric Disorders (MiND) Study builds on our pilot (Eratne et al, ANZJP, 2020), to explore the diagnostic and broader utility of plasma and cerebrospinal fluid (CSF) NfL and other novel markers such as phosphorylated tau 181 (p‐tau181), in a broad range of psychiatric and neurodegenerative/neurological disorders, with a view of translation into routine clinical practice. Methods We assessed plasma and/or CSF NfL and p‐tau181 concentrations in broad cohorts, including: patients assessed for neurocognitive/psychiatric symptoms at Neuropsychiatry and Melbourne Young‐Onset Dementia services and other services, in a wide range of disorders including Alzheimer disease, frontotemporal dementia, schizophrenia, bipolar disorder, depression, Niemann‐Pick Type C, epilepsy, functional neurological disorders. The most recent primary consensus diagnosis informed by established diagnostic criteria was categorised: primary psychiatric disorder (PPD), neurodegenerative/neurological disorder (ND), or healthy controls (HC). Results Findings from over 500 patients/participants will be presented, which indicate that CSF and plasma NfL levels are significantly elevated in a broad range of ND compared to a broad range of PPD, and HC, and bvFTD progressors from phenocopy syndromes, differentiating with areas under the curve of >0.90, sensitivity and specificity >90%. Plasma P‐tau181 levels distinguished Alzheimer disease (mainly younger sporadic), compared to other neurodegenerative disorders, with AUC 0.90, 90% sensitivity and specificity. As recruitment, sample analysis, data collection is ongoing, the most up to date results will be presented. Conclusions NfL shows great promise as a diagnostic test to assist with the common, challenging diagnostic dilemma of distinguishing neurodegenerative from non‐neurodegenerative and primary psychiatric disorders. Plasma p‐tau181 shows strong diagnostic utility in younger‐onset Alzheimer disease. A significantly elevated NfL in someone with a psychiatric diagnosis should prompt consideration of neurodegenerative differentials. Plasma NfL could dramatically alter clinical care of patients with neuropsychiatric and neurological symptoms, improving outcomes for patients, their families, the healthcare system, and clinical trials.
  • Item
    No Preview Available
    Could cerebrospinal fluid neurofilament light chain reduce misdiagnosis in neurodegenerative and neuropsychiatric disorders in a real‐world setting? A retrospective clinical and diagnostic utility study
    Kang, M ; Dobson, H ; Li, Q ; Keem, M ; Loi, SM ; Masters, CL ; Collins, S ; Velakoulis, D ; Eratne, D (Wiley, 2021-12)
    Abstract Background Patients presenting with neuropsychiatric symptoms often face significant diagnostic odyssey. Our recent research (Eratne et al, ANZJP, 2020) found neurofilament light (NfL) differentiated between neurodegenerative and psychiatric disorders, with high accuracy. Yet the clinical utility of NfL, as to whether it can aid clinicians in avoiding misdiagnosis in a real‐world clinical setting, is unknown. Our primary aim was to measure the rates of diagnostic change in patients with neuropsychiatric symptoms assessed at a tertiary multidisciplinary service, and determine whether baseline cerebrospinal (CSF) NfL level could have prevented misdiagnoses, by predicting the final diagnosis after follow up. Methods We conducted a retrospective file review of patients assessed at an Australian neuropsychiatry and young‐onset dementia service between 2009‐2020. NfL levels were measured from CSF collected at their baseline assessment. Blinded investigators (MK, HD, DE) extracted clinical data including diagnoses from discharge summaries and outpatient letters from the initial assessment and re‐assessment. Baseline and final diagnoses were categorised as neurodegenerative disorder [ND], or, other non‐neurodegenerative conditions including primary psychiatric disorder [Other/PPD]. We also obtained follow‐up information on patients that were subsequently seen at external services where available. Results From a preliminary analysis of those with follow‐up information for at least a year (N=32), six patients’ diagnostic categories (19%) were revised (ND to Other/PPD=5; Other/PPD to ND=1). In all six cases (figure 2), baseline CSF NfL levels, using our previously established cut‐off, would have predicted the final revised diagnosis. As this study is underway, findings for over 200 patients will be presented for the Conference. Conclusions In a real‐world tertiary clinical setting, baseline CSF NfL would have accurately predicted diagnostic change, showing promise to aid clinicians assessing patients with neuropsychiatric symptoms, and reduce misdiagnosis. An elevated level could help exclude primary psychiatric provisional or differential diagnoses, and prompt assertive investigations for neurological and neurodegenerative causes. Conversely, a low NfL, could reassure against a neurodegenerative disorder, preventing unnecessary assessments. Timely and accurate diagnosis will reduce uncertainty, enable early care planning, reduce patient and carer burden, thus improving outcomes and the diagnostic odyssey faced by patients and families.
  • Item
    Thumbnail Image
    Prion disease in Indigenous Australians
    Panegyres, PK ; Stehmann, C ; Klug, GM ; Masters, CL ; Collins, S (WILEY, 2021-07)
    BACKGROUND: Indigenous Australians are at increased risk of developing dementia - Alzheimer disease and mixed dementia diagnoses are the most common. While prion diseases have been reported in Indigenous peoples of Papua New Guinea and the United States, the occurrence and phenotype of prion disease in Indigenous Australians is hitherto unreported. AIM: To report the incidence rate and clinical phenotype of Creutzfeldt-Jakob disease (CJD) in Indigenous Australians. METHOD: Crude sporadic CJD (sCJD) incidence rates and indirect age standardisation of all CJD were assessed to calculate the standardised mortality ratio (SMR) of the Indigenous Australian population in comparison to the all-resident Australian population, along with analysis of clinical phenotypes. RESULTS: We report an illustrative case of an Indigenous Australian from regionally remote Western Australia dying from typical 'probable' sCJD 2 months after disease onset, with Australian National CJD Registry (ANCJDR) surveillance overall demonstrating eight Indigenous Australians dying from sCJD (five post-mortem confirmed, three classified as 'probable') with a clinical phenotype similar to non-indigenous people, including median age at death of 61 years (interquartile range IQR = 16 years) and median duration of illness of 3 months (IQR = 1.6 months). Indigenous Australians with sCJD were geographically dispersed throughout Australia. The calculated overall crude annual rate of sCJD in Indigenous Australians compared to the remainder of the Australian population was not significantly different (0-3.87/million for Indigenous Australians; 0.94-1.83/million for non-indigenous). The overall indirect age-standardised CJD mortality ratio for the indigenous population for the years 2006-2018 was 1.49 (95% CI, 0.75-2.98), also not significantly different to the all-resident Australian population. CONCLUSION: CJD occurs in Indigenous Australians with clinical phenotype and occurrence rates similar to non-Indigenous Australians. These findings contrast with a previous report where the incidence rate of CJD in a non-Australian indigenous population was reported to be decreased.
  • Item
    No Preview Available
    Erratum to: Creutzfeldt-Jakob disease surveillance in Australia: update to 31 December 2020.
    Stehmann, C ; Senesi, M ; Sarros, S ; McGlade, A ; Lewis, V ; Simpson, M ; Klug, G ; McLean, C ; Masters, CL ; Collins, SJ (Australian Government Department of Health and Aged Care, 2021-08-09)
    Erratum to Commun Dis Intell (2018) 2021;45 (https://doi.org/10.33321/cdi.2021.45.38).
  • Item
    No Preview Available
    Creutzfeldt-Jakob disease surveillance in Australia: update to 31 December 2020 (vol 22, 45, 2021)
    Stehmann, C ; Senesi, M ; Sarros, S ; McGlade, A ; Lewis, V ; Simpson, M ; Klug, G ; McLean, C ; Masters, CL ; Collins, S (AUSTRALIAN GOVERNMENT, DEPT HEALTH & AGEING, 2021-08-09)
    Nationwide surveillance of Creutzfeldt-Jakob disease and other human prion diseases is performed by the Australian National Creutzfeldt-Jakob Disease Registry (ANCJDR). National surveillance encompasses the period since 1 January 1970, with prospective surveillance occurring from 1 October 1993. Over this prospective surveillance period, considerable developments have occurred in pre-mortem diagnostics; in the delineation of new disease subtypes; and in a heightened awareness of prion diseases in healthcare settings. Surveillance practices of the ANCJDR have evolved and adapted accordingly. This report summarises the activities of the ANCJDR during 2020. Since the ANCJDR began offering diagnostic cerebrospinal fluid (CSF) 14-3-3 protein testing in Australia in September 1997, the annual number of referrals has steadily increased. In 2020, 510 domestic CSF specimens were referred for 14-3-3 protein testing and 85 persons with suspected human prion disease were formally added to the national register. As of 31 December 2020, just over half (44 cases) of the 85 suspect case notifications remain classified as 'incomplete'; 27 cases were excluded through either detailed clinical follow-up (9 cases) or neuropathological examination (18 cases); 18 cases were classified as 'definite' and eleven as 'probable' prion disease. For 2020, sixty percent of all suspected human-prion-disease-related deaths in Australia underwent neuropathological examination. No cases of variant or iatrogenic CJD were identified. The SARS-CoV-2 pandemic did not affect prion disease surveillance outcomes in Australia.
  • Item
    Thumbnail Image
    Fifteen Years of the Australian Imaging, Biomarkers and Lifestyle (AIBL) Study: Progress and Observations from 2,359 Older Adults Spanning the Spectrum from Cognitive Normality to Alzheimer's Disease
    Fowler, C ; Rainey-Smith, SR ; Bird, S ; Bomke, J ; Bourgeat, P ; Brown, BM ; Burnham, SC ; Bush, A ; Chadunow, C ; Collins, S ; Doecke, J ; Dore, V ; Ellis, KA ; Evered, L ; Fazlollahi, A ; Fripp, J ; Gardener, SL ; Gibson, S ; Grenfell, R ; Harrison, E ; Head, R ; Jin, L ; Kamer, A ; Lamb, F ; Lautenschlager, NT ; Laws, SM ; Li, Q-X ; Lim, L ; Lim, YY ; Louey, A ; Macaulay, SL ; Mackintosh, L ; Martins, RN ; Maruff, P ; Masters, CL ; McBride, S ; Milicic, L ; Peretti, M ; Pertile, K ; Porter, T ; Radler, M ; Rembach, A ; Robertson, J ; Rodrigues, M ; Rowe, CC ; Rumble, R ; Salvado, O ; Savage, G ; Silbert, B ; Soh, M ; Sohrabi, HR ; Taddei, K ; Taddei, T ; Thai, C ; Trounson, B ; Tyrrell, R ; Vacher, M ; Varghese, S ; Villemagne, VL ; Weinborn, M ; Woodward, M ; Xia, Y ; Ames, D (IOS PRESS, 2021)
    BACKGROUND: The Australian Imaging, Biomarkers and Lifestyle (AIBL) Study commenced in 2006 as a prospective study of 1,112 individuals (768 cognitively normal (CN), 133 with mild cognitive impairment (MCI), and 211 with Alzheimer's disease dementia (AD)) as an 'Inception cohort' who underwent detailed ssessments every 18 months. Over the past decade, an additional 1247 subjects have been added as an 'Enrichment cohort' (as of 10 April 2019). OBJECTIVE: Here we provide an overview of these Inception and Enrichment cohorts of more than 8,500 person-years of investigation. METHODS: Participants underwent reassessment every 18 months including comprehensive cognitive testing, neuroimaging (magnetic resonance imaging, MRI; positron emission tomography, PET), biofluid biomarkers and lifestyle evaluations. RESULTS: AIBL has made major contributions to the understanding of the natural history of AD, with cognitive and biological definitions of its three major stages: preclinical, prodromal and clinical. Early deployment of Aβ-amyloid and tau molecular PET imaging and the development of more sensitive and specific blood tests have facilitated the assessment of genetic and environmental factors which affect age at onset and rates of progression. CONCLUSION: This fifteen-year study provides a large database of highly characterized individuals with longitudinal cognitive, imaging and lifestyle data and biofluid collections, to aid in the development of interventions to delay onset, prevent or treat AD. Harmonization with similar large longitudinal cohort studies is underway to further these aims.
  • Item
    Thumbnail Image
    Core Alzheimer's disease cerebrospinal fluid biomarker assays are not affected by aspiration or gravity drip extraction methods
    Doecke, JD ; Francois, C ; Fowler, CJ ; Stoops, E ; Bourgeat, P ; Rainey-Smith, SR ; Li, Q-X ; Masters, CL ; Martins, RN ; Villemagne, VL ; Collins, SJ ; Vanderstichele, HM (BMC, 2021-04-16)
    BACKGROUND: CSF biomarkers are well-established for routine clinical use, yet a paucity of comparative assessment exists regarding CSF extraction methods during lumbar puncture. Here, we compare in detail biomarker profiles in CSF extracted using either gravity drip or aspiration. METHODS: Biomarkers for β-amyloidopathy (Aβ1-42, Aβ1-40), tauopathy (total tau), or synapse pathology (BACE1, Neurogranin Trunc-p75, α-synuclein) were assessed between gravity or aspiration extraction methods in a sub-population of the Australian Imaging, Biomarkers and Lifestyle (AIBL) study (cognitively normal, N = 36; mild cognitive impairment, N = 8; Alzheimer's disease, N = 6). RESULTS: High biomarker concordance between extraction methods was seen (concordance correlation > 0.85). Passing Bablock regression defined low beta coefficients indicating high scalability. CONCLUSIONS: Levels of these commonly assessed CSF biomarkers are not influenced by extraction method. Results of this study should be incorporated into new consensus guidelines for CSF collection, storage, and analysis of biomarkers.
  • Item
    Thumbnail Image
    Asymmetric thinning of the cerebral cortex across the adult lifespan is accelerated in Alzheimer's disease
    Roe, JM ; Vidal-Pineiro, D ; Sorensen, O ; Brandmaier, AM ; Duzel, S ; Gonzalez, HA ; Kievit, RA ; Knights, E ; Kuhn, S ; Lindenberger, U ; Mowinckel, AM ; Nyberg, L ; Park, DC ; Pudas, S ; Rundle, MM ; Walhovd, KB ; Fjell, AM ; Westerhausen, R (NATURE PORTFOLIO, 2021-02-01)
    Aging and Alzheimer's disease (AD) are associated with progressive brain disorganization. Although structural asymmetry is an organizing feature of the cerebral cortex it is unknown whether continuous age- and AD-related cortical degradation alters cortical asymmetry. Here, in multiple longitudinal adult lifespan cohorts we show that higher-order cortical regions exhibiting pronounced asymmetry at age ~20 also show progressive asymmetry-loss across the adult lifespan. Hence, accelerated thinning of the (previously) thicker homotopic hemisphere is a feature of aging. This organizational principle showed high consistency across cohorts in the Lifebrain consortium, and both the topological patterns and temporal dynamics of asymmetry-loss were markedly similar across replicating samples. Asymmetry-change was further accelerated in AD. Results suggest a system-wide dedifferentiation of the adaptive asymmetric organization of heteromodal cortex in aging and AD.
  • Item
    No Preview Available
    Creutzfeldt-Jakob disease surveillance in Australia: update to 31 December
    Stehmann, C ; Senesi, M ; Sarros, S ; McGlade, A ; Simpson, M ; Klug, G ; McLean, C ; Masters, CL ; Collins, S (AUSTRALIAN GOVERNMENT, DEPT HEALTH & AGEING, 2020-07-14)
    Nationwide surveillance of Creutzfeldt-Jakob disease and other human prion diseases is performed by the Australian National Creutzfeldt-Jakob Disease Registry (ANCJDR). National surveillance encompasses the period since 1 January 1970, with prospective surveillance occurring from 1 October 1993. Over this prospective surveillance period, considerable developments have occurred in pre-mortem diagnostics; in the delineation of new disease subtypes; and in a heightened awareness of prion diseases in healthcare settings. Surveillance practices of the ANCJDR have evolved and adapted accordingly. This report summarises the activities of the ANCJDR during 2019. Since the ANCJDR began offering diagnostic cerebrospinal fluid (CSF) 14-3-3 protein testing in Australia in September 1997, the annual number of referrals has steadily increased. In 2019, 513 domestic CSF specimens were referred for 14-3-3 protein testing and 85 persons with suspected human prion disease were formally added to the national register. As of 31 December 2019, just under half (42 cases) of the 85 suspect case notifications remain classified as 'incomplete'; 16 cases were excluded through either detailed clinical follow-up (3 cases) or neuropathological examination (13 cases); 20 cases were classified as 'definite' and seven as 'probable' prion disease. For 2019, sixty-three percent of all suspected human prion disease related deaths in Australia underwent neuropathological examination. No cases of variant or iatrogenic CJD were identified. Two possibly causal novel prion protein gene (PRNP) sequence variations were identified.
  • Item
    Thumbnail Image
    Risk prediction of late-onset Alzheimer's disease implies an oligogenic architecture
    Zhang, Q ; Sidorenko, J ; Couvy-Duchesne, B ; Marioni, RE ; Wright, MJ ; Goate, AM ; Marcora, E ; Huang, K-L ; Porter, T ; Laws, SM ; Sachdev, PS ; Mather, KA ; Armstrong, NJ ; Thalamuthu, A ; Brodaty, H ; Yengo, L ; Yang, J ; Wray, NR ; McRae, AF ; Visscher, PM (NATURE RESEARCH, 2020-09-23)
    Genetic association studies have identified 44 common genome-wide significant risk loci for late-onset Alzheimer’s disease (LOAD). However, LOAD genetic architecture and prediction are unclear. Here we estimate the optimal P-threshold (Poptimal) of a genetic risk score (GRS) for prediction of LOAD in three independent datasets comprising 676 cases and 35,675 family history proxy cases. We show that the discriminative ability of GRS in LOAD prediction is maximised when selecting a small number of SNPs. Both simulation results and direct estimation indicate that the number of causal common SNPs for LOAD may be less than 100, suggesting LOAD is more oligogenic than polygenic. The best GRS explains approximately 75% of SNP-heritability, and individuals in the top decile of GRS have ten-fold increased odds when compared to those in the bottom decile. In addition, 14 variants are identified that contribute to both LOAD risk and age at onset of LOAD.