Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Graphene foam as a biocompatible scaffold for culturing human neurons
    D'Abaco, GM ; Mattei, C ; Nasr, BK ; Hudson, EJ ; Alshawaf, AJ ; Chana, G ; Everall, IP ; Nayagam, B ; Dottori, M ; Skafidas, E (ROYAL SOC, 2018-03)
    In this study, we explore the use of electrically active graphene foam as a scaffold for the culture of human-derived neurons. Human embryonic stem cell (hESC)-derived cortical neurons fated as either glutamatergic or GABAergic neuronal phenotypes were cultured on graphene foam. We show that graphene foam is biocompatible for the culture of human neurons, capable of supporting cell viability and differentiation of hESC-derived cortical neurons. Based on the findings, we propose that graphene foam represents a suitable scaffold for engineering neuronal tissue and warrants further investigation as a model for understanding neuronal maturation, function and circuit formation.
  • Item
    Thumbnail Image
    Self-Organized Nanostructure Modified Microelectrode for Sensitive Electrochemical Glutamate Detection in Stem Cells-Derived Brain Organoids
    Nasr, B ; Chatterton, R ; Yong, JHM ; Jamshidi, P ; D'Abaco, GM ; Bjorksten, AR ; Kavehei, O ; Chana, G ; Dottori, M ; Skafidas, E (MDPI, 2018-03)
    Neurons release neurotransmitters such as glutamate to communicate with each other and to coordinate brain functioning. As increased glutamate release is indicative of neuronal maturation and activity, a system that can measure glutamate levels over time within the same tissue and/or culture system is highly advantageous for neurodevelopmental investigation. To address such challenges, we develop for the first time a convenient method to realize functionalized borosilicate glass capillaries with nanostructured texture as an electrochemical biosensor to detect glutamate release from cerebral organoids generated from human embryonic stem cells (hESC) that mimic various brain regions. The biosensor shows a clear catalytic activity toward the oxidation of glutamate with a sensitivity of 93 ± 9.5 nA·µM-1·cm-2. It was found that the enzyme-modified microelectrodes can detect glutamate in a wide linear range from 5 µM to 0.5 mM with a limit of detection (LOD) down to 5.6 ± 0.2 µM. Measurements were performed within the organoids at different time points and consistent results were obtained. This data demonstrates the reliability of the biosensor as well as its usefulness in measuring glutamate levels across time within the same culture system.
  • Item
    Thumbnail Image
    Generation of Neural Organoids from Human Embryonic Stem Cells Using the Rotary Cell Culture System: Effects of Microgravity on Neural Progenitor Cell Fate
    Mattei, C ; Alshawaf, A ; D'Abaco, G ; Nayagam, B ; Dottori, M (MARY ANN LIEBERT, INC, 2018-06)
    Progress in aeronautics and spaceflight technologies requires in parallel further research on how microgravity may affect human tissue. To date, little is known about the effects of microgravity on human development. In this study we used the rotary cell culture system to investigate whether microgravity supports the generation and maintenance of neural organoids derived from human embryonic stem cells (hESCs) as a model of human brain development. Our results show that although neural organoids could be generated and maintained in microgravity conditions, there were changes in expression of rostral-caudal neural patterning genes and cortical markers compared to organoids generated in standard conditions. This phenomenon was also observed in hESC-derived cortical organoids exposed to microgravity for relatively shorter periods. These results are one of the first for analyzing human neurogenesis in a microgravity environment.