Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Exploring the Modulation of Hypoxia-Inducible Factor (HIF)-1α by Volatile Anesthetics as a Possible Mechanism Underlying Volatile Anesthetic-Induced CNS Injury
    Giles, EK ; Lawrence, AJ ; Duncan, JR (SPRINGER/PLENUM PUBLISHERS, 2014-09)
    This review summarizes recent research on the potential cognitive and behavioural abnormalities induced by exposure to volatile anesthetics and suggests a role of hypoxia-inducible factor (HIF)-1α in mediating these events. Volatile anesthetics are widely utilized in clinical and research settings, yet the long-term safety of exposure to these agents is under debate. Findings from various animal models suggest volatile anesthetics induce widespread apoptosis in the central nervous system (CNS) that correlates with lasting deficits in learning and memory. Longitudinal analysis of clinical data highlight an increased risk of developmental disorders later in life when children are exposed to volatile anesthetics, particularly when exposures occur over multiple sessions. However, the mechanisms underlying these events have yet to be established. Considering the extensive use of volatile anesthetics, it is crucial that these events are better understood. The possible role of HIF-1α in volatile anesthetic-induced CNS abnormalities will be suggested and areas requiring urgent attention will be outlined.
  • Item
    Thumbnail Image
    Chronic intermittent toluene inhalation initiated during adolescence in rats does not alter voluntary consumption of ethanol in adulthood
    Dick, ALW ; Lawrence, AJ ; Duncan, JR (ELSEVIER SCIENCE INC, 2014-09)
    Voluntary inhalation of organic solvents, such as toluene, is particularly prevalent in adolescent populations and is considered to be a contributing factor to substance use and dependence later in life. While inhalants are often the initial "drug" experienced during this period, alcohol is another substance readily abused by adolescent populations. Although both substances are thought to have similar actions within the brain, our understanding of the implications of adolescent inhalant abuse upon subsequent exposure to alcohol remains to be investigated. Thus, this study aimed to assess locomotor responses to acute ethanol and voluntary ethanol consumption following a period of toluene inhalation throughout adolescence/early adulthood. Adolescent male Wistar rats (postnatal day [PN] 27) inhaled air or toluene (3000 ppm) for 1 h/day, 3 days/week for 4 (PN 27-52) or 8 weeks (PN 27-80) to mimic the patterns observed in human inhalant abusers. Following the exposure period, cross-sensitization to acute ethanol challenge (0.5 g/kg, intra-peritoneally [i.p.]), and voluntary consumption of 20% ethanol in a chronic intermittent 2-bottle choice paradigm, were assessed. Hepatic ethanol and acetaldehyde metabolism and liver histopathology were also investigated. Chronic intermittent toluene (CIT) exposure throughout adolescence for up to 8 weeks did not alter the behavioral response to acute ethanol or voluntary consumption of ethanol in adulthood, although an age-dependent effect on ethanol consumption was observed (p<0.05). Both liver function and pathology did not differ between treatment groups. Thus, in the paradigm employed, CIT exposure throughout adolescence and early adulthood did not predispose rats to subsequent locomotor sensitivity or voluntary consumption of ethanol in adulthood.
  • Item
    Thumbnail Image
    Adolescent Toluene Inhalation in Rats Affects White Matter Maturation with the Potential for Recovery Following Abstinence
    Duncan, JR ; Dick, ALW ; Egan, G ; Kolbe, S ; Gavrilescu, M ; Wright, D ; Lubman, DI ; Lawrence, AJ ; Homberg, J (PUBLIC LIBRARY SCIENCE, 2012-09-18)
    Inhalant misuse is common during adolescence, with ongoing chronic misuse associated with neurobiological and cognitive abnormalities. While human imaging studies consistently report white matter abnormalities among long-term inhalant users, longitudinal studies have been lacking with limited data available regarding the progressive nature of such abnormalities, including the potential for recovery following periods of sustained abstinence. We exposed adolescent male Wistar rats (postnatal day 27) to chronic intermittent inhaled toluene (3,000 ppm) for 1 hour/day, 3 times/week for 8 weeks to model abuse patterns observed in adolescent and young adult human users. This dosing regimen resulted in a significant retardation in weight gain during the exposure period (p<0.05). In parallel, we performed longitudinal magnetic resonance imaging (T₂-weighted) and diffusion tensor imaging prior to exposure, and after 4 and 8 weeks, to examine the integrity of white matter tracts, including the anterior commissure and corpus callosum. We also conducted imaging after 8 weeks of abstinence to assess for potential recovery. Chronic intermittent toluene exposure during adolescence and early adulthood resulted in white matter abnormalities, including a decrease in axial (p<0.05) and radial (p<0.05) diffusivity. These abnormalities appeared region-specific, occurring in the anterior commissure but not the corpus callosum and were not present until after at least 4 weeks of exposure. Toluene-induced effects on both body weight and white matter parameters recovered following abstinence. Behaviourally, we observed a progressive decrease in rearing activity following toluene exposure but no difference in motor function, suggesting cognitive function may be more sensitive to the effects of toluene. Furthermore, deficits in rearing were present by 4 weeks suggesting that toluene may affect behaviour prior to detectable white matter abnormalities. Consequently, exposure to inhalants that contain toluene during adolescence and early adulthood appear to differentially affect white matter maturation and behavioural outcomes, although recovery can occur following abstinence.
  • Item
    Thumbnail Image
    mGlu5 and adenosine A2A receptor interactions regulate the conditioned effects of cocaine
    Brown, RM ; Duncan, JR ; Stagnitti, MR ; Ledent, C ; Lawrence, AJ (OXFORD UNIV PRESS, 2012-08)
    Adenosine A2A receptors and metabotropic glutamate type 5 (mGlu5) receptors are co-localized in the striatum and can functionally interact to regulate drug-seeking. We further explored this interaction using antagonism of mGlu5 receptors with 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine (MTEP) in combination with genetic deletion of A2A receptors. The conditioned rewarding and locomotor-activating properties of cocaine were evaluated via conditioned place preference (CPP). Vehicle-treated mice of both genotypes expressed a CPP to cocaine while MTEP abolished cocaine CPP in wild-type, but not A2A knockout, mice. These results were mirrored when conditioned hyperactivity was assessed. In contrast, MTEP attenuated the acute locomotor-activating properties of cocaine similarly in both genotypes. These data provide evidence for a functional interaction between adenosine A2A and mGlu5 receptors in mediating the conditioned effects of cocaine but not direct cocaine-induced hyperactivity. This functional interaction is supported by modulation of 4-(2-[7-amino-2-[2-furyl][1,2,4]triazolol[2,3-a][1,3,5]triazin-5-yl-amino]ethyl)phenol ([125I]ZM241385) binding to the A2A receptor by MTEP.
  • Item
    Thumbnail Image
    Specific impairments in instrumental learning following chronic intermittent toluene inhalation in adolescent rats
    Dick, ALW ; Axelsson, M ; Lawrence, AJ ; Duncan, JR (SPRINGER, 2014-04)
    RATIONALE: Inhalant abuse is prevalent in adolescent populations, with chronic use resulting in neurobiological and cognitive abnormalities in adulthood. However, the nature and persistence of cognitive dysfunction, particularly following adolescent inhalant abuse, remain equivocal. OBJECTIVE: The present study assessed specific cognitive processes beginning in late adolescence and adulthood following adolescent inhalation of toluene, a main component of many compounds readily abused. METHODS: Adolescent male Wistar rats (postnatal day (PN) 27) were exposed to chronic intermittent inhaled toluene (10,000 ppm) for 1 h/day, 3 days/week for 4 weeks (PN 27-52) to mimic the patterns observed in human adolescent inhalant abusers. Following toluene exposure, motor and cognitive function was assessed. RESULTS: Adolescent toluene exposure did not alter motor learning in the Rotarod task (PN 58) or acquisition, reversal, or retention of spatial learning in the Morris water maze (PN 55-64). In contrast, it delayed acquisition of instrumental responding for sucrose (5 % w/v) and impaired operant reversal learning and cue-induced reinstatement of sucrose seeking in adulthood (PN 57-100). CONCLUSION: This study demonstrates that exposure to toluene at an abuse concentration during adolescence results in specific impairments in aspects of instrumental learning, without altering motor function and spatial learning in late adolescence/early adulthood. Our data imply that persistent alterations in reward processing may occur following adolescent inhalant misuse.
  • Item
    No Preview Available
    Conventional Concepts and New Perspectives for Understanding the Addictive Properties of Inhalants
    Duncan, JR ; Lawrence, AJ (JAPANESE PHARMACOLOGICAL SOC, 2013-08)
    The abuse of inhaled chemical vapors is a growing problem especially among adolescent populations. This is partly driven by the fact that inhaled products are cheap, accessible, and provide a rapid 'high'. In the brain inhalants have multiple effects. They are neurotoxic, targeting primarily white matter pathways, which is believed to underlie the long-term neurological consequences associated with repeated use. Inhalants are also addictive, resulting in adaptive responses in pathways mediating reward and reinforcement. This includes an ability to alter dopaminergic cell firing and result in long-term mesocorticolimbic dopaminergic dysfunction. However, growing evidence suggests that the reinforcing properties of inhalants may also be driven by their ability to affect neurotransmitter systems other than the dopaminergic system. Both glutamatergic and g-aminobutyric acid (GABA)ergic systems are emerging as key targets of inhalants with differential responses observed following either acute or chronic exposures. These responses appear particularly important in circuits which appear vulnerable to inhalants and which can also modulate dopaminergic function such as the corticostriatal pathway. Thus in combination with the effects of inhalants on dopaminergic systems, our increased understanding of the role(s) of glutamatergic and GABAergic systems provide new and exciting targets to consider for intervention strategies to limit inhalant use.