Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 19
  • Item
    Thumbnail Image
    Diacetylbis(N(4)-methylthiosemicarbazonato) Copper(II) (CuII(atsm)) Protects against Peroxynitrite-induced Nitrosative Damage and Prolongs Survival in Amyotrophic Lateral Sclerosis Mouse Model
    Soon, CPW ; Donnelly, PS ; Turner, BJ ; Hung, LW ; Crouch, PJ ; Sherratt, NA ; Tan, J-L ; Lim, NK-H ; Lam, L ; Bica, L ; Lim, S ; Hickey, JL ; Morizzi, J ; Powell, A ; Finkelstein, DI ; Culvenor, JG ; Masters, CL ; Duce, J ; White, AR ; Barnham, KJ ; Li, Q-X (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2011-12-23)
    Amyotrophic lateral sclerosis (ALS) is a progressive paralyzing disease characterized by tissue oxidative damage and motor neuron degeneration. This study investigated the in vivo effect of diacetylbis(N(4)-methylthiosemicarbazonato) copper(II) (CuII(atsm)), which is an orally bioavailable, blood-brain barrier-permeable complex. In vitro the compound inhibits the action of peroxynitrite on Cu,Zn-superoxide dismutase (SOD1) and subsequent nitration of cellular proteins. Oral treatment of transgenic SOD1G93A mice with CuII(atsm) at presymptomatic and symptomatic ages was performed. The mice were examined for improvement in lifespan and motor function, as well as histological and biochemical changes to key disease markers. Systemic treatment of SOD1G93A mice significantly delayed onset of paralysis and prolonged lifespan, even when administered to symptomatic animals. Consistent with the properties of this compound, treated mice had reduced protein nitration and carbonylation, as well as increased antioxidant activity in spinal cord. Treatment also significantly preserved motor neurons and attenuated astrocyte and microglial activation in mice. Furthermore, CuII(atsm) prevented the accumulation of abnormally phosphorylated and fragmented TAR DNA-binding protein-43 (TDP-43) in spinal cord, a protein pivotal to the development of ALS. CuII(atsm) therefore represents a potential new class of neuroprotective agents targeting multiple major disease pathways of motor neurons with therapeutic potential for ALS.
  • Item
    Thumbnail Image
    Intravenous Immunglobulin Binds Beta Amyloid and Modifies Its Aggregation, Neurotoxicity and Microglial Phagocytosis In Vitro
    Cattepoel, S ; Schaub, A ; Ender, M ; Gaida, A ; Kropf, A ; Guggisberg, U ; Nolte, MW ; Fabri, L ; Adlard, PA ; Finkelstein, DI ; Bolli, R ; Miescher, SM ; Block, ML (PUBLIC LIBRARY SCIENCE, 2013-05-16)
    Intravenous Immunoglobulin (IVIG) has been proposed as a potential therapeutic for Alzheimer's disease (AD) and its efficacy is currently being tested in mild-to-moderate AD. Earlier studies reported the presence of anti-amyloid beta (Aβ) antibodies in IVIG. These observations led to clinical studies investigating the potential role of IVIG as a therapeutic agent in AD. Also, IVIG is known to mediate beneficial effects in chronic inflammatory and autoimmune conditions by interfering with various pathological processes. Therefore, we investigated the effects of IVIG and purified polyclonal Aβ-specific antibodies (pAbs-Aβ) on aggregation, toxicity and phagocytosis of Aβ in vitro, thus elucidating some of the potential mechanisms of action of IVIG in AD patients. We report that both IVIG and pAbs-Aβ specifically bound to Aβ and inhibited its aggregation in a dose-dependent manner as measured by Thioflavin T assay. Additionally, IVIG and the purified pAbs-Aβ inhibited Aβ-induced neurotoxicity in the SH-SY5Y human neuroblastoma cell line and prevented Aβ binding to rat primary cortical neurons. Interestingly, IVIG and pAbs-Aβ also increased the number of phagocytosing cells as well as the amount of phagocytosed fibrillar Aβ by BV-2 microglia. Phagocytosis of Aβ depended on receptor-mediated endocytosis and was accompanied by upregulation of CD11b expression. Importantly, we could also show that Privigen dose-dependently reversed Aβ-mediated LTP inhibition in mouse hippocampal slices. Therefore, our in vitro results suggest that IVIG may have an impact on different processes involved in AD pathogenesis, thereby promoting further understanding of the effects of IVIG observed in clinical studies.
  • Item
    Thumbnail Image
    Interactions of metals and Apolipoprotein E in Alzheimer's disease
    Xu, H ; Finkelstein, DI ; Adlard, PA (FRONTIERS MEDIA SA, 2014-06-12)
    Alzheimer's disease (AD) is the most common form of dementia, which is characterized by the neuropathological accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles (NFTs). Clinically, patients will endure a gradual erosion of memory and other higher order cognitive functions. Whilst the underlying etiology of the disease remains to be definitively identified, a body of work has developed over the last two decades demonstrating that AD plasma/serum and brain are characterized by a dyshomeostasis in a number of metal ions. Furthermore, these metals (such as zinc, copper and iron) play roles in the regulation of the levels of AD-related proteins, including the amyloid precursor protein (APP) and tau. It is becoming apparent that metals also interact with other proteins, including apolipoprotein E (ApoE). The Apolipoprotein E gene (APOE) is critically associated with AD, with APOE4 representing the strongest genetic risk factor for the development of late-onset AD. In this review we will summarize the evidence supporting a role for metals in the function of ApoE and its consequent role in the pathogenesis of AD.
  • Item
    Thumbnail Image
    Glia and zinc in ageing and Alzheimer's disease: a mechanism for cognitive decline?
    Hancock, SM ; Finkelstein, DI ; Adlard, PA (FRONTIERS MEDIA SA, 2014-06-25)
    Normal ageing is characterized by cognitive decline across a range of neurological functions, which are further impaired in Alzheimer's disease (AD). Recently, alterations in zinc (Zn) concentrations, particularly at the synapse, have emerged as a potential mechanism underlying the cognitive changes that occur in both ageing and AD. Zn is now accepted as a potent neuromodulator, affecting a variety of signaling pathways at the synapse that are critical to normal cognition. While the focus has principally been on the neuron: Zn interaction, there is a growing literature suggesting that glia may also play a modulatory role in maintaining both Zn ion homeostasis and the normal function of the synapse. Indeed, zinc transporters (ZnT's) have been demonstrated in glial cells where Zn has also been shown to have a role in signaling. Furthermore, there is increasing evidence that the pathogenesis of AD critically involves glial cells (such as astrocytes), which have been reported to contribute to amyloid-beta (Aβ) neurotoxicity. This review discusses the current evidence supporting a complex interplay of glia, Zn dyshomeostasis and synaptic function in ageing and AD.
  • Item
    Thumbnail Image
    Increased Ndfip1 in the Substantia Nigra of Parkinsonian Brains Is Associated with Elevated Iron Levels
    Howitt, J ; Gysbers, AM ; Ayton, S ; Carew-Jones, F ; Putz, U ; Finkelstein, DI ; Halliday, GM ; Tan, S-S ; Smeyne, RJ (PUBLIC LIBRARY SCIENCE, 2014-01-24)
    Iron misregulation is a central component in the neuropathology of Parkinson's disease. The iron transport protein DMT1 is known to be increased in Parkinson's brains linking functional transport mechanisms with iron accumulation. The regulation of DMT1 is therefore critical to the management of iron uptake in the disease setting. We previously identified post-translational control of DMT1 levels through a ubiquitin-mediated pathway led by Ndfip1, an adaptor for Nedd4 family of E3 ligases. Here we show that loss of Ndfip1 from mouse dopaminergic neurons resulted in misregulation of DMT1 levels and increased susceptibility to iron induced death. We report that in human Parkinson's brains increased iron concentrations in the substantia nigra are associated with upregulated levels of Ndfip1 in dopaminergic neurons containing α-synuclein deposits. Additionally, Ndfip1 was also found to be misexpressed in astrocytes, a cell type normally devoid of this protein. We suggest that in Parkinson's disease, increased iron levels are associated with increased Ndfip1 expression for the regulation of DMT1, including abnormal Ndfip1 activation in non-neuronal cell types such as astrocytes.
  • Item
    Thumbnail Image
    Rescue of the Friedreich Ataxia Knockout Mutation in Transgenic Mice Containing an FXN-EGFP Genomic Reporter
    Sarsero, JP ; Holloway, TP ; Li, L ; Finkelstein, DI ; Ioannou, PA ; Borlongan, CV (PUBLIC LIBRARY SCIENCE, 2014-03-25)
    Friedreich ataxia (FRDA) is an autosomal recessive disorder characterized by neurodegeneration and cardiomyopathy. The presence of a GAA trinucleotide repeat expansion in the first intron of the FXN gene results in the inhibition of gene expression and an insufficiency of the mitochondrial protein frataxin. We previously generated BAC-based transgenic mice containing an FXN-EGFP genomic reporter construct in which the EGFP gene is fused in-frame immediately following the final codon of exon 5a of the human FXN gene. These transgenic mice were mated with mice heterozygous for a knockout mutation of the murine Fxn gene, to generate mice homozygous for the Fxn knockout mutation and hemizygous or homozygous for the human transgene. Rescue of the embryonic lethality that is associated with homozygosity for the Fxn knockout mutation was observed. Rescue mice displayed normal behavioral and histological parameters with normal viability, fertility and life span and without any signs of aberrant phenotype. Immunoblotting demonstrated the production of full-length frataxin-EGFP fusion protein that appears to act as a bifunctional hybrid protein. This study shows frataxin replacement may be a viable therapeutic option. Further, these mice should provide a useful resource for the study of human FXN gene expression, frataxin function, the evaluation of pharmacologic inducers of FXN expression in a whole-animal model and provide a useful source of cells for stem cell transplantation studies.
  • Item
    Thumbnail Image
    Role of metal ions in the cognitive decline of Down syndrome
    Malakooti, N ; Pritchard, MA ; Adlard, PA ; Finkelstein, DI (FRONTIERS MEDIA SA, 2014-06-23)
    Down syndrome (DS), caused by trisomy of whole or part of chromosome 21 is the most common mental impairment. All people with DS suffer from cognitive decline and develop Alzheimer's disease (AD) by the age of 40. The appearance of enlarged early endosomes, followed by Amyloid βpeptide deposition, the appearance of tau-containing neurofibrillary tangles and basal forebrain cholinergic neuron (BFCN) degeneration are the neuropathological characteristics of this disease. In this review we will examine the role of metal ion dyshomeostasis and the genes which may be involved in these processes, and relate these back to the manifestation of age-dependent cognitive decline in DS.
  • Item
    Thumbnail Image
    Targeting the Progression of Parkinson's Disease
    George, JL ; Mok, S ; Moses, D ; Wilkins, S ; Bush, AI ; Cherny, RA ; Finkelstein, DI (BENTHAM SCIENCE PUBL LTD, 2009-03)
    By the time a patient first presents with symptoms of Parkinson's disease at the clinic, a significant proportion (50-70%) of the cells in the substantia nigra (SN) has already been destroyed. This degeneration progresses until, within a few years, most of the cells have died. Except for rare cases of familial PD, the initial trigger for cell loss is unknown. However, we do have some clues as to why the damage, once initiated, progresses unabated. It would represent a major advance in therapy to arrest cell loss at the stage when the patient first presents at the clinic. Current therapies for Parkinson's disease focus on relieving the motor symptoms of the disease, these unfortunately lose their effectiveness as the neurodegeneration and symptoms progress. Many experimental approaches are currently being investigated attempting to alter the progression of the disease. These range from replacement of the lost neurons to neuroprotective therapies; each of these will be briefly discussed in this review. The main thrust of this review is to explore the interactions between dopamine, alpha synuclein and redox-active metals. There is abundant evidence suggesting that destruction of SN cells occurs as a result of a self-propagating series of reactions involving dopamine, alpha synuclein and redox-active metals. A potent reducing agent, the neurotransmitter dopamine has a central role in this scheme, acting through redox metallo-chemistry to catalyze the formation of toxic oligomers of alpha-synuclein and neurotoxic metabolites including 6-hydroxydopamine. It has been hypothesized that these feed the cycle of neurodegeneration by generating further oxidative stress. The goal of dissecting and understanding the observed pathological changes is to identify therapeutic targets to mitigate the progression of this debilitating disease.
  • Item
    Thumbnail Image
    The hypoxia imaging agent CuII(atsm) is neuroprotective and improves motor and cognitive functions in multiple animal models of Parkinson's disease
    Hung, LW ; Villemagne, VL ; Cheng, L ; Sherratt, NA ; Ayton, S ; White, AR ; Crouch, PJ ; Lim, S ; Leong, SL ; Wilkins, S ; George, J ; Roberts, BR ; Pham, CLL ; Liu, X ; Chiu, FCK ; Shackleford, DM ; Powell, AK ; Masters, CL ; Bush, AI ; O'Keefe, G ; Culvenor, JG ; Cappai, R ; Cherny, RA ; Donnelly, PS ; Hill, AF ; Finkelstein, DI ; Barnham, KJ (ROCKEFELLER UNIV PRESS, 2012-04-09)
    Parkinson's disease (PD) is a progressive, chronic disease characterized by dyskinesia, rigidity, instability, and tremors. The disease is defined by the presence of Lewy bodies, which primarily consist of aggregated α-synuclein protein, and is accompanied by the loss of monoaminergic neurons. Current therapeutic strategies only give symptomatic relief of motor impairment and do not address the underlying neurodegeneration. Hence, we have identified Cu(II)(atsm) as a potential therapeutic for PD. Drug administration to four different animal models of PD resulted in improved motor and cognition function, rescued nigral cell loss, and improved dopamine metabolism. In vitro, this compound is able to inhibit the effects of peroxynitrite-driven toxicity, including the formation of nitrated α-synuclein oligomers. Our results show that Cu(II)(atsm) is effective in reversing parkinsonian defects in animal models and has the potential to be a successful treatment of PD.
  • Item
    Thumbnail Image
    RECOVERY OF MUSCLE AFTER DIFFERENT PERIODS OF DENERVATION AND TREATMENTS
    FINKELSTEIN, DI ; DOOLEY, PC ; LUFF, AR (WILEY, 1993-07)
    Three aspects of reinnervation and recovery of skeletal muscle following various periods of denervation were investigated: (1) the effect of duration of denervation; (2) the effect of hyperthyroidism on recovery; and (3) whether the muscle or the nerve limits recovery. The rat medial gastrocnemius (MG) nerve was cut and then resutured after 0, 3, 7, 21, or 56 days. In a second group of animals, the MG muscle was denervated and, in addition, the animal received triiodothyronine (T3) supplementation during reinnervation. The third group of animals had the denervated MG muscle reinnervated by a larger number of newly transected foreign axons. The force produced by the reinnervated muscle depends on the period that the muscle was denervated. Recovery was impaired when the period of denervation exceeded 7 days. T3 treatment did not benefit the return of force production, nor did providing the muscle with a larger number of newly transected axons.