Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 75
  • Item
    No Preview Available
    Empirically derived formulae for calculation of age- and region-related levels of iron, copper and zinc in the adult C57BL/6 mouse brain.
    Suryana, E ; Rowlands, BD ; Bishop, DP ; Finkelstein, DI ; Double, KL (Elsevier BV, 2024-04)
    Metal dyshomeostasis is associated with neurodegenerative disorders, cancers and vascular disease. We report the effects of age (range: 3 to 18 months) on regional copper, iron and zinc levels in the brain of the C57BL/6 mouse, a widely used inbred strain with a permissive background allowing maximal expression of mutations in models that recapitulate these disorders. We present formulae that can be used to determine regional brain metal concentrations in the C57BL/6 mouse at any age in the range of three to eighteen months of life. Copper levels in the C57BL/6 mouse adult brain were highest in the striatum and cerebellum and increased with age, excepting the cortex and hippocampus. Regional iron levels increased linearly with age in all brain regions, while regional zinc concentrations became more homogeneous with age. Knockdown of the copper transporter Ctr1 reduced brain copper, but not iron or zinc, concentrations in a regionally-dependent manner. These findings demonstrate biometals in the brain change with age in a regionally-dependent manner. These data and associated formulae have implications for improving design and interpretation of a wide variety of studies in the C57BL/6 mouse.
  • Item
    No Preview Available
    Altered Outer Retinal Structure, Electrophysiology and Visual Perception in Parkinson's Disease
    Tran, KKN ; Lee, PY ; Finkelstein, DI ; McKendrick, AM ; Nguyen, BN ; Bui, BV ; Nguyen, CTO (IOS PRESS, 2024)
    BACKGROUND: Visual biomarkers of Parkinson's disease (PD) are attractive as the retina is an outpouching of the brain. Although inner retinal neurodegeneration in PD is well-established this has overlap with other neurodegenerative diseases and thus outer retinal (photoreceptor) measures warrant further investigation. OBJECTIVE: To examine in a cross-sectional study whether clinically implementable measures targeting outer retinal function and structure can differentiate PD from healthy ageing and whether these are sensitive to intraday levodopa (L-DOPA) dosing. METHODS: Centre-surround perceptual contrast suppression, macular visual field sensitivity, colour discrimination, light-adapted electroretinography and optical coherence tomography (OCT) were tested in PD participants (n = 16) and controls (n = 21). Electroretinography and OCT were conducted before and after midday L-DOPA in PD participants, or repeated after ∼2 hours in controls. RESULTS: PD participants had decreased center-surround contrast suppression (p < 0.01), reduced macular visual field sensitivity (p < 0.05), color vision impairment (p < 0.01) photoreceptor dysfunction (a-wave, p < 0.01) and photoreceptor neurodegeneration (outer nuclear layer thinning, p < 0.05), relative to controls. Effect size comparison between inner and outer retinal parameters showed that photoreceptor metrics were similarly robust in differentiating the PD group from age-matched controls as inner retinal changes. Electroretinography and OCT were unaffected by L-DOPA treatment or time. CONCLUSIONS: We show that outer retinal outcomes of photoreceptoral dysfunction (decreased cone function and impaired color vision) and degeneration (i.e., outer nuclear layer thinning) were equivalent to inner retinal metrics at differentiating PD from healthy age-matched adults. These findings suggest outer retinal metrics may serve as useful biomarkers for PD.
  • Item
    No Preview Available
    Understanding the potential causes of gastrointestinal dysfunctions in multiple system atrophy
    Craig, CF ; Finkelstein, DI ; McQuade, RM ; Diwakarla, S (Elsevier, 2023-10-15)
    Multiple system atrophy (MSA) is a rare, progressive neurodegenerative disorder characterised by autonomic, pyramidal, parkinsonian and/or cerebellar dysfunction. Autonomic symptoms of MSA include deficits associated with the gastrointestinal (GI) system, such as difficulty swallowing, abdominal pain and bloating, nausea, delayed gastric emptying, and constipation. To date, studies assessing GI dysfunctions in MSA have primarily focused on alterations of the gut microbiome, however growing evidence indicates other structural components of the GI tract, such as the enteric nervous system, the intestinal barrier, GI hormones, and the GI-driven immune response may contribute to MSA-related GI symptoms. Here, we provide an in-depth exploration of the physiological, structural, and immunological changes theorised to underpin GI dysfunction in MSA patients and highlight areas for future research in order to identify more suitable pharmaceutical treatments for GI symptoms in patients with MSA.
  • Item
    Thumbnail Image
    ATH434 Rescues Pre-motor Hyposmia in a Mouse Model of Parkinsonism
    Beauchamp, LC ; Liu, XM ; Vella, LJ ; Adlard, PA ; Bush, A ; Finkelstein, D ; Barnham, KJ (SPRINGER, 2022-10)
    Hyposmia is a prevalent prodromal feature of Parkinson's disease (PD), though the neuropathology that underlies this symptom is poorly understood. Unlike the substantia nigra, the status of metal homeostasis in the olfactory bulbs has not been characterized in PD. Given the increasing interest in metal modulation as a therapeutic avenue in PD, we sought to investigate bulbar metals and the effect of AT434 (formerly PBT434) an orally bioavailable, small molecule modulator of metal homeostasis on hyposmia in a mouse model of parkinsonism (the tau knockout (tau-/-) mouse). 5.5 (pre-hyposmia) and 13.5-month-old (pre-motor) mice were dosed with ATH434 (30 mg/kg/day, oral gavage) for 6 weeks. Animals then underwent behavioral analysis for olfactory and motor phenotypes. The olfactory bulbs and the substantia nigra were then collected and analyzed for metal content, synaptic markers, and dopaminergic cell number. ATH434 was able to prevent the development of hyposmia in young tau-/- mice, which coincided with a reduction in bulbar iron and copper levels, an increase in synaptophysin, and a reduction in soluble α-synuclein. ATH434 was able to prevent the development of motor impairment in aged tau-/- mice, which coincided with a reduction in iron levels and reduced neurodegeneration in the substantia nigra. These data implicate metal dyshomeostasis in parkinsonian olfactory deficits, and champion a potential clinical benefit of ATH434 in both prodromal and clinical stages of PD.
  • Item
    No Preview Available
    Tailored behavioural tests reveal early and progressive cognitive deficits in M1000 prion disease
    Senesi, M ; Lewis, V ; Adlard, PA ; Finkelstein, DI ; Kim, JH ; Collins, SJ (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2023-05)
    Prion diseases are pathogenically linked to the normal cellular prion protein (PrPC) misfolding into abnormal conformers (PrPSc), with PrPSc accumulation underpinning both transmission and neurotoxicity. Despite achieving this canonical understanding, however fundamental questions remain incompletely resolved, including the level of pathophysiological overlap between neurotoxic and transmitting species of PrPSc and the temporal profiles of their propagation. To further investigate the likely time of occurrence of significant levels of neurotoxic species during prion disease development, the well characterised in vivo M1000 murine model was employed. Following intracerebral inoculation, detailed serial cognitive and ethological testing at specified time points suggested subtle transition to early symptomatic disease from ∼50% of the overall disease course. In addition to observing a chronological order for impaired behaviours, different behavioural tests also showed distinctive profiles of evolving cognitive impairments with the Barnes maze demonstrating a relatively simple linear worsening of spatial learning and memory over an extended period while in contrast a conditioned fear memory paradigm previously untested in murine prion disease demonstrated more complex alterations during disease progression. These observations support the likely production of neurotoxic PrPSc from at least just prior to the mid-point of murine M1000 prion disease and illustrate the likely need to tailor the types of behavioural testing across the time course of disease progression for optimal detection of cognitive deficits.
  • Item
    Thumbnail Image
    Diacetylbis(N(4)-methylthiosemicarbazonato) Copper(II) (CuII(atsm)) Protects against Peroxynitrite-induced Nitrosative Damage and Prolongs Survival in Amyotrophic Lateral Sclerosis Mouse Model
    Soon, CPW ; Donnelly, PS ; Turner, BJ ; Hung, LW ; Crouch, PJ ; Sherratt, NA ; Tan, J-L ; Lim, NK-H ; Lam, L ; Bica, L ; Lim, S ; Hickey, JL ; Morizzi, J ; Powell, A ; Finkelstein, DI ; Culvenor, JG ; Masters, CL ; Duce, J ; White, AR ; Barnham, KJ ; Li, Q-X (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2011-12-23)
    Amyotrophic lateral sclerosis (ALS) is a progressive paralyzing disease characterized by tissue oxidative damage and motor neuron degeneration. This study investigated the in vivo effect of diacetylbis(N(4)-methylthiosemicarbazonato) copper(II) (CuII(atsm)), which is an orally bioavailable, blood-brain barrier-permeable complex. In vitro the compound inhibits the action of peroxynitrite on Cu,Zn-superoxide dismutase (SOD1) and subsequent nitration of cellular proteins. Oral treatment of transgenic SOD1G93A mice with CuII(atsm) at presymptomatic and symptomatic ages was performed. The mice were examined for improvement in lifespan and motor function, as well as histological and biochemical changes to key disease markers. Systemic treatment of SOD1G93A mice significantly delayed onset of paralysis and prolonged lifespan, even when administered to symptomatic animals. Consistent with the properties of this compound, treated mice had reduced protein nitration and carbonylation, as well as increased antioxidant activity in spinal cord. Treatment also significantly preserved motor neurons and attenuated astrocyte and microglial activation in mice. Furthermore, CuII(atsm) prevented the accumulation of abnormally phosphorylated and fragmented TAR DNA-binding protein-43 (TDP-43) in spinal cord, a protein pivotal to the development of ALS. CuII(atsm) therefore represents a potential new class of neuroprotective agents targeting multiple major disease pathways of motor neurons with therapeutic potential for ALS.
  • Item
    No Preview Available
    Retinal alpha-synuclein accumulation correlates with retinal dysfunction and structural thinning in the A53T mouse model of Parkinson's disease
    Tran, KKN ; Wong, VHY ; Hoang, A ; Finkelstein, DI ; Bui, BV ; Nguyen, CTO (FRONTIERS MEDIA SA, 2023-05-05)
    Abnormal alpha-synuclein (α-SYN) protein deposition has long been recognized as one of the pathological hallmarks of Parkinson's disease's (PD). This study considers the potential utility of PD retinal biomarkers by investigating retinal changes in a well characterized PD model of α-SYN overexpression and how these correspond to the presence of retinal α-SYN. Transgenic A53T homozygous (HOM) mice overexpressing human α-SYN and wildtype (WT) control littermates were assessed at 4, 6, and 14  months of age (male and female, n = 15-29 per group). In vivo retinal function (electroretinography, ERG) and structure (optical coherence tomography, OCT) were recorded, and retinal immunohistochemistry and western blot assays were performed to examine retinal α-SYN and tyrosine hydroxylase. Compared to WT controls, A53T mice exhibited reduced light-adapted (cone photoreceptor and bipolar cell amplitude, p < 0.0001) ERG responses and outer retinal thinning (outer plexiform layer, outer nuclear layer, p < 0.0001) which correlated with elevated levels of α-SYN. These retinal signatures provide a high throughput means to study α-SYN induced neurodegeneration and may be useful in vivo endpoints for PD drug discovery.
  • Item
    Thumbnail Image
    How Well Do Rodent Models of Parkinson's Disease Recapitulate Early Non-Motor Phenotypes? A Systematic Review
    Zhang, TD ; Kolbe, SC ; Beauchamp, LC ; Woodbridge, EK ; Finkelstein, DI ; Burrows, EL (MDPI, 2022-12)
    The prodromal phase of Parkinson's disease (PD) is characterised by many non-motor symptoms, and these have recently been posited to be predictive of later diagnosis. Genetic rodent models can develop non-motor phenotypes, providing tools to identify mechanisms underlying the early development of PD. However, it is not yet clear how reproducible non-motor phenotypes are amongst genetic PD rodent models, whether phenotypes are age-dependent, and the translatability of these phenotypes has yet to be explored. A systematic literature search was conducted on studies using genetic PD rodent models to investigate non-motor phenotypes; cognition, anxiety/depressive-like behaviour, gastrointestinal (GI) function, olfaction, circadian rhythm, cardiovascular and urinary function. In total, 51 genetic models of PD across 150 studies were identified. We found outcomes of most phenotypes were inconclusive due to inadequate studies, assessment at different ages, or variation in experimental and environmental factors. GI dysfunction was the most reproducible phenotype across all genetic rodent models. The mouse model harbouring mutant A53T, and the wild-type hα-syn overexpression (OE) model recapitulated the majority of phenotypes, albeit did not reliably produce concurrent motor deficits and nigral cell loss. Furthermore, animal models displayed different phenotypic profiles, reflecting the distinct genetic risk factors and heterogeneity of disease mechanisms. Currently, the inconsistent phenotypes within rodent models pose a challenge in the translatability and usefulness for further biomechanistic investigations. This review highlights opportunities to improve phenotype reproducibility with an emphasis on phenotypic assay choice and robust experimental design.
  • Item
    Thumbnail Image
    A Critical Analysis of Intestinal Enteric Neuron Loss and Constipation in Parkinson's Disease
    O'Day, C ; Finkelstein, DI ; Diwakarla, S ; McQuade, RM (IOS PRESS, 2022)
    Constipation afflicts many patients with Parkinson's disease (PD) and significantly impacts on patient quality of life. PD-related constipation is caused by intestinal dysfunction, but the etiology of this dysfunction in patients is unknown. One possible cause is neuron loss within the enteric nervous system (ENS) of the intestine. This review aims to 1) Critically evaluate the evidence for and against intestinal enteric neuron loss in PD patients, 2) Justify why PD-related constipation must be objectively measured, 3) Explore the potential link between loss of enteric neurons in the intestine and constipation in PD, 4) Provide potential explanations for disparities in the literature, and 5) Outline data and study design considerations to improve future research. Before the connection between intestinal enteric neuron loss and PD-related constipation can be confidently described, future research must use sufficiently large samples representative of the patient population (majority diagnosed with idiopathic PD for at least 5 years), implement a consistent neuronal quantification method and study design, including standardized patient recruitment criteria, objectively quantify intestinal dysfunctions, publish with a high degree of data transparency and account for potential PD heterogeneity. Further investigation into other potential influencers of PD-related constipation is also required, including changes in the function, connectivity, mitochondria and/or α-synuclein proteins of enteric neurons and their extrinsic innervation. The connection between enteric neuron loss and other PD-related gastrointestinal (GI) issues, including gastroparesis and dysphagia, as well as changes in nutrient absorption and the microbiome, should be explored in future research.
  • Item
    Thumbnail Image
    Pathogenic Impact of α-Synuclein Phosphorylation and Its Kinases in α-Synucleinopathies
    Kawahata, I ; Finkelstein, D ; Fukunaga, K (MDPI, 2022-06)
    α-Synuclein is a protein with a molecular weight of 14.5 kDa and consists of 140 amino acids encoded by the SNCA gene. Missense mutations and gene duplications in the SNCA gene cause hereditary Parkinson's disease. Highly phosphorylated and abnormally aggregated α-synuclein is a major component of Lewy bodies found in neuronal cells of patients with sporadic Parkinson's disease, dementia with Lewy bodies, and glial cytoplasmic inclusion bodies in oligodendrocytes with multiple system atrophy. Aggregated α-synuclein is cytotoxic and plays a central role in the pathogenesis of the above-mentioned synucleinopathies. In a healthy brain, most α-synuclein is unphosphorylated; however, more than 90% of abnormally aggregated α-synuclein in Lewy bodies of patients with Parkinson's disease is phosphorylated at Ser129, which is presumed to be of pathological significance. Several kinases catalyze Ser129 phosphorylation, but the role of phosphorylation enzymes in disease pathogenesis and their relationship to cellular toxicity from phosphorylation are not fully understood in α-synucleinopathy. Consequently, this review focuses on the pathogenic impact of α-synuclein phosphorylation and its kinases during the neurodegeneration process in α-synucleinopathy.