Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Differential effect of amphetamine on c-fos expression in female aromatase knockout (ArKO) mice compared to wildtype controls
    Chavez, C ; Gogos, A ; Hill, R ; Van Sinderen, M ; Simpson, E ; Boon, WC ; van den Buuse, M (PERGAMON-ELSEVIER SCIENCE LTD, 2011-06)
    Estrogen may be involved in psychosis by an interaction with central dopaminergic activity. Aromatase knockout mice are unable to produce estrogen and have been shown to display altered behavioural responses and effects of the dopamine releaser, amphetamine. This study investigates the effect of gonadal status on amphetamine-induced c-fos expression in the brains of female aromatase knockout and wildtype mice. Six groups of mice were treated intraperitoneally with saline or 5mg/kg amphetamine. Fos immunoreactivity was assessed in the cingulate cortex, caudate putamen and nucleus accumbens. Aromatase knockout mice showed markedly reduced amphetamine-induced Fos immunoreactivity compared to wildtype mice. However, the amphetamine response was restored in aromatase-knockout mice after ovariectomy, which reduced this effect in wildtype controls. Estrogen supplementation reversed the effect of ovariectomy in wildtype mice but had no additional significant effect in aromatase-knockout mice. These results indicate that mechanisms involved in amphetamine-induced c-fos expression are altered in aromatase knockout mice and that the primary hormone involved in this effect is not estrogen, but may be another factor released from the ovaries, such as an androgen. These results provide new insight into the effect of gonadal hormones on amphetamine induced c-fos expression in this mouse model of estrogen deficiency. These results could be important for our understanding of the role of sex steroid hormones in psychosis.
  • Item
    Thumbnail Image
    SEX DIFFERENCES AND THE ROLE OF ESTROGEN IN ANIMAL MODELS OF SCHIZOPHRENIA: INTERACTION WITH BDNF
    Wu, YC ; Hill, RA ; Gogos, A ; Van Den Buuse, M (PERGAMON-ELSEVIER SCIENCE LTD, 2013-06-03)
    Schizophrenia is a severe psychiatric disorder with a complex and variable set of symptoms. Both genetic and environmental mechanisms are involved in the development of the illness and lead to structural and neurochemical abnormalities in the brain. An intriguing facet of schizophrenia is sex differences, which have been described for nearly all features of the illness, including the peak age of onset, symptoms and treatment response. The ovarian hormone, estrogen, may be protective against schizophrenia and evidence is accumulating that estrogen may exert this effect via an interaction with brain-derived neurotrophic factor (BDNF). Both estrogen and BDNF have trophic effects on the developing brain and promote synaptic plasticity and maintain neurons well into adulthood. Major neurotransmitter systems including dopaminergic, serotonergic and glutamatergic pathways are modulated and supported by estrogen and BDNF. Despite their commonalities, estrogen and BDNF have mostly been examined independently but increasing evidence suggests an interaction between the two in brain regions pertinent to schizophrenia. This review will focus on the role of estrogen and BDNF in clinical and animal studies of schizophrenia. We include animal models of neurotransmitter dysfunction and genetic manipulation to show how estrogen may provide a protective effect in schizophrenia, including through mediating BDNF expression and activity. This posited estrogen-BDNF interaction could play a key role in modulating sex-dependent results reported in animal work as well as sex differences in clinical aspects of schizophrenia.
  • Item
    No Preview Available
    Sex-dependent alterations in BDNF-TrkB signaling in the hippocampus of reelin heterozygous mice: a role for sex steroid hormones
    Hill, RA ; Wu, Y-WC ; Gogos, A ; van den Buuse, M (WILEY, 2013-08)
    Neurodevelopmental psychiatric disorders such as schizophrenia may be caused by a combination of gene × environment, gene × gene, and/or gene × sex interactions. Reduced expression of both Reelin and Brain-Derived Neurotrophic factor (BDNF) has been associated with schizophrenia in human post-mortem studies. However, it remains unclear how Reelin and BDNF interact (gene × gene) and whether this is sex-specific (gene × sex). This study investigated BDNF-TrkB signaling in the hippocampus of male and female Reelin heterozygous (Rln(+/-) ) mice. We found significantly increased levels of BDNF in the ventral hippocampus (VHP) of female, but not male Rln(+/-) compared to wild-type (WT) controls. While levels of TrkB were not significantly altered, phosphorylated TrkB (pTrkB) levels were significantly lower, again only in female Rln(+/-) compared to WT. This translated to downstream effects with a significant decrease in phosphorylated ERK1 (pERK1). No changes in BDNF, TrkB, pTrkB or pERK1/2 were observed in the dorsal hippocampus of Rln(+/-) mice. Ovariectomy (OVX) had no effect in WT controls, but caused a significant decrease in BDNF expression in the VHP of Rln(+/-) mice to the levels of intact WT controls. The high expression of BDNF was restored in OVX Rln(+/-) mice by 17β-estradiol treatment, suggesting that Rln(+/-) mice respond differently to an altered estradiol state than WT controls. In addition, while OVX had no significant effect on TrkB or ERK expression/phosphorylation, OVX + estradiol treatment markedly increased TrkB and ERK1 phosphorylation in Rln(+/-) and, to a lesser extent in WT controls, compared to intact genotype-matched controls. These data may provide a better understanding of the interaction of Reelin and BDNF in the hippocampus, which may be involved in schizophrenia.