Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 37
  • Item
    No Preview Available
    Extracellular vesicular lipids as biomarkers for the diagnosis of Alzheimer’s disease
    Su, H ; Rustam, YH ; Masters, CL ; Makalic, E ; McLean, C ; Hill, AF ; Barnham, KJ ; Reid, GE ; Vella, LJ (Wiley, 2021-12-31)
    An increasing number of studies have revealed that dysregulated lipid homeostasis is associated with the pathological processes that lead to Alzheimer’s disease (AD). If changes in key lipid species could be detected in the periphery, it would advance our understanding of the disease and facilitate biomarker discovery. Global lipidomic profiling of sera/blood however has proved challenging with limited disease or tissue specificity. Small extracellular vesicles (EV) in the central nervous system, can pass the blood-brain barrier and enter the periphery, carrying a subset of lipids that could reflect lipid homeostasis in brain. This makes EVs uniquely suited for peripheral biomarker exploration.
  • Item
    Thumbnail Image
    Biallelic hypomorphic variants in ALDH1A2 cause a novel lethal human multiple congenital anomaly syndrome encompassing diaphragmatic, pulmonary, and cardiovascular defects
    Beecroft, SJ ; Ayala, M ; McGillivray, G ; Nanda, V ; Agolini, E ; Novelli, A ; Digilio, MC ; Dotta, A ; Carrozzo, R ; Clayton, J ; Gaffney, L ; McLean, CA ; Ng, J ; Laing, NG ; Matteson, P ; Millonig, J ; Ravenscroft, G (WILEY-HINDAWI, 2021-05)
    This study shows a causal association between ALDH1A2 variants and a novel, severe multiple congenital anomaly syndrome in humans that is neonatally lethal due to associated pulmonary hypoplasia and respiratory failure. In two families, exome sequencing identified compound heterozygous missense variants in ALDH1A2. ALDH1A2 is involved in the conversion of retinol (vitamin A) into retinoic acid (RA), which is an essential regulator of diaphragm and cardiovascular formation during embryogenesis. Reduced RA causes cardiovascular, diaphragmatic, and associated pulmonary defects in several animal models, matching the phenotype observed in our patients. In silico protein modeling showed probable impairment of ALDH1A2 for three of the four substitutions. In vitro studies show a reduction of RA. Few pathogenic variants in genes encoding components of the retinoic signaling pathway have been described to date, likely due to embryonic lethality. Thus, this study contributes significantly to knowledge of the role of this pathway in human diaphragm and cardiovascular development and disease. Some clinical features in our patients are also observed in Fryns syndrome (MIM# 229850), syndromic microphthalmia 9 (MIM# 601186), and DiGeorge syndrome (MIM# 188400). Patients with similar clinical features who are genetically undiagnosed should be tested for recessive ALDH1A2-deficient malformation syndrome.
  • Item
    Thumbnail Image
    Distal oesophageal giant fibrovascular polyp in a patient with laparoscopic adjustable gastric band
    Yang, TWW ; Packiyanathan, A ; Tagkalidis, P ; McLean, C ; Brown, W (WILEY, 2021-11)
  • Item
    No Preview Available
    Erratum to: Creutzfeldt-Jakob disease surveillance in Australia: update to 31 December 2020.
    Stehmann, C ; Senesi, M ; Sarros, S ; McGlade, A ; Lewis, V ; Simpson, M ; Klug, G ; McLean, C ; Masters, CL ; Collins, SJ (Australian Government Department of Health and Aged Care, 2021-08-09)
    Erratum to Commun Dis Intell (2018) 2021;45 (https://doi.org/10.33321/cdi.2021.45.38).
  • Item
    No Preview Available
    Endoplasmic reticulum stress and induction of the unfolded protein response in human sporadic amyotrophic lateral sclerosis (Retraction of Vol 30, art no 400, 2008)
    Atkin, JD ; Farg, MA ; Walker, AK ; McLean, C ; Tomas, D ; Horne, MK (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2021-03)
  • Item
    No Preview Available
    Creutzfeldt-Jakob disease surveillance in Australia: update to 31 December 2020 (vol 22, 45, 2021)
    Stehmann, C ; Senesi, M ; Sarros, S ; McGlade, A ; Lewis, V ; Simpson, M ; Klug, G ; McLean, C ; Masters, CL ; Collins, S (AUSTRALIAN GOVERNMENT, DEPT HEALTH & AGEING, 2021-08-09)
    Nationwide surveillance of Creutzfeldt-Jakob disease and other human prion diseases is performed by the Australian National Creutzfeldt-Jakob Disease Registry (ANCJDR). National surveillance encompasses the period since 1 January 1970, with prospective surveillance occurring from 1 October 1993. Over this prospective surveillance period, considerable developments have occurred in pre-mortem diagnostics; in the delineation of new disease subtypes; and in a heightened awareness of prion diseases in healthcare settings. Surveillance practices of the ANCJDR have evolved and adapted accordingly. This report summarises the activities of the ANCJDR during 2020. Since the ANCJDR began offering diagnostic cerebrospinal fluid (CSF) 14-3-3 protein testing in Australia in September 1997, the annual number of referrals has steadily increased. In 2020, 510 domestic CSF specimens were referred for 14-3-3 protein testing and 85 persons with suspected human prion disease were formally added to the national register. As of 31 December 2020, just over half (44 cases) of the 85 suspect case notifications remain classified as 'incomplete'; 27 cases were excluded through either detailed clinical follow-up (9 cases) or neuropathological examination (18 cases); 18 cases were classified as 'definite' and eleven as 'probable' prion disease. For 2020, sixty percent of all suspected human-prion-disease-related deaths in Australia underwent neuropathological examination. No cases of variant or iatrogenic CJD were identified. The SARS-CoV-2 pandemic did not affect prion disease surveillance outcomes in Australia.
  • Item
    Thumbnail Image
    Enhanced Expression of microRNA-1273g-3p Contributes to Alzheimer's Disease Pathogenesis by Regulating the Expression of Mitochondrial Genes
    Kim, SH ; Choi, KY ; Park, Y ; McLean, C ; Park, J ; Lee, JH ; Lee, K-H ; Kim, BC ; Huh, YH ; Lee, KH ; Song, WK (MDPI, 2021-10)
    Alzheimer's disease (AD) is the most common form of dementia in the elderly population, but its underlying cause has not been fully elucidated. Recent studies have shown that microRNAs (miRNAs) play important roles in regulating the expression levels of genes associated with AD development. In this study, we analyzed miRNAs in plasma and cerebrospinal fluid (CSF) from AD patients and cognitively normal (including amyloid positive) individuals. miR-1273g-3p was identified as an AD-associated miRNA and found to be elevated in the CSF of early-stage AD patients. The overexpression of miR-1273g-3p enhanced amyloid beta (Aβ) production by inducing oxidative stress and mitochondrial impairments in AD model cell lines. A biotin-streptavidin pull-down assay demonstrated that miR-1273g-3p primarily interacts with mitochondrial genes, and that their expression is downregulated by miR-1273g-3p. In particular, the miR-1273g-3p-target gene TIMM13 showed reduced expression in brain tissues from human AD patients. These results suggest that miR-1273g-3p expression in an early stage of AD notably contributes to Aβ production and mitochondrial impairments. Thus, miR-1273g-3p might be a biomarker for early diagnosis of AD and a potential therapeutic target to prevent AD progression.
  • Item
    Thumbnail Image
    Early white matter pathology in the fornix of the limbic system in Huntington disease
    Gabery, S ; Kwa, JE ; Cheong, RY ; Baldo, B ; Bardile, CF ; Tan, B ; McLean, C ; Georgiou-Karistianis, N ; Poudel, GR ; Halliday, G ; Pouladi, MA ; Petersen, A (SPRINGER, 2021-11)
    Huntington disease (HD) is a fatal neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin (HTT) gene. The typical motor symptoms have been associated with basal ganglia pathology. However, psychiatric and cognitive symptoms often precede the motor component and may be due to changes in the limbic system. Recent work has indicated pathology in the hypothalamus in HD but other parts of the limbic system have not been extensively studied. Emerging evidence suggests that changes in HD also include white matter pathology. Here we investigated if the main white matter tract of the limbic system, the fornix, is affected in HD. We demonstrate that the fornix is 34% smaller already in prodromal HD and 41% smaller in manifest HD compared to controls using volumetric analyses of MRI of the IMAGE-HD study. In post-mortem fornix tissue from HD cases, we confirm the smaller fornix volume in HD which is accompanied by signs of myelin breakdown and reduced levels of the transcription factor myelin regulating factor but detect no loss of oligodendrocytes. Further analyses using RNA-sequencing demonstrate downregulation of oligodendrocyte identity markers in the fornix of HD cases. Analysis of differentially expressed genes based on transcription-factor/target-gene interactions also revealed enrichment for binding sites of SUZ12 and EZH2, components of the Polycomb Repressive Complex 2, as well as RE1 Regulation Transcription Factor. Taken together, our data show that there is early white matter pathology of the fornix in the limbic system in HD likely due to a combination of reduction in oligodendrocyte genes and myelin break down.
  • Item
    Thumbnail Image
    Evaluation of FGFR targeting in breast cancer through interrogation of patient-derived models
    Chew, NJ ; Lim Kam Sian, TCC ; Nguyen, EV ; Shin, S-Y ; Yang, J ; Hui, MN ; Deng, N ; McLean, CA ; Welm, AL ; Lim, E ; Gregory, P ; Nottle, T ; Lang, T ; Vereker, M ; Richardson, G ; Kerr, G ; Micati, D ; Jarde, T ; Abud, HE ; Lee, RS ; Swarbrick, A ; Daly, RJ (BMC, 2021-08-03)
    BACKGROUND: Particular breast cancer subtypes pose a clinical challenge due to limited targeted therapeutic options and/or poor responses to the existing targeted therapies. While cell lines provide useful pre-clinical models, patient-derived xenografts (PDX) and organoids (PDO) provide significant advantages, including maintenance of genetic and phenotypic heterogeneity, 3D architecture and for PDX, tumor-stroma interactions. In this study, we applied an integrated multi-omic approach across panels of breast cancer PDXs and PDOs in order to identify candidate therapeutic targets, with a major focus on specific FGFRs. METHODS: MS-based phosphoproteomics, RNAseq, WES and Western blotting were used to characterize aberrantly activated protein kinases and effects of specific FGFR inhibitors. PDX and PDO were treated with the selective tyrosine kinase inhibitors AZD4547 (FGFR1-3) and BLU9931 (FGFR4). FGFR4 expression in cancer tissue samples and PDOs was assessed by immunohistochemistry. METABRIC and TCGA datasets were interrogated to identify specific FGFR alterations and their association with breast cancer subtype and patient survival. RESULTS: Phosphoproteomic profiling across 18 triple-negative breast cancers (TNBC) and 1 luminal B PDX revealed considerable heterogeneity in kinase activation, but 1/3 of PDX exhibited enhanced phosphorylation of FGFR1, FGFR2 or FGFR4. One TNBC PDX with high FGFR2 activation was exquisitely sensitive to AZD4547. Integrated 'omic analysis revealed a novel FGFR2-SKI fusion that comprised the majority of FGFR2 joined to the C-terminal region of SKI containing the coiled-coil domains. High FGFR4 phosphorylation characterized a luminal B PDX model and treatment with BLU9931 significantly decreased tumor growth. Phosphoproteomic and transcriptomic analyses confirmed on-target action of the two anti-FGFR drugs and also revealed novel effects on the spliceosome, metabolism and extracellular matrix (AZD4547) and RIG-I-like and NOD-like receptor signaling (BLU9931). Interrogation of public datasets revealed FGFR2 amplification, fusion or mutation in TNBC and other breast cancer subtypes, while FGFR4 overexpression and amplification occurred in all breast cancer subtypes and were associated with poor prognosis. Characterization of a PDO panel identified a luminal A PDO with high FGFR4 expression that was sensitive to BLU9931 treatment, further highlighting FGFR4 as a potential therapeutic target. CONCLUSIONS: This work highlights how patient-derived models of human breast cancer provide powerful platforms for therapeutic target identification and analysis of drug action, and also the potential of specific FGFRs, including FGFR4, as targets for precision treatment.
  • Item
    Thumbnail Image
    Differential NPY-Y1 Receptor Density in the Motor Cortex of ALS Patients and Familial Model of ALS
    Clark, CM ; Clark, RM ; Hoyle, JA ; Chuckowree, JA ; McLean, CA ; Dickson, TC (MDPI, 2021-08)
    Destabilization of faciliatory and inhibitory circuits is an important feature of corticomotor pathology in amyotrophic lateral sclerosis (ALS). While GABAergic inputs to upper motor neurons are reduced in models of the disease, less understood is the involvement of peptidergic inputs to upper motor neurons in ALS. The neuropeptide Y (NPY) system has been shown to confer neuroprotection against numerous pathogenic mechanisms implicated in ALS. However, little is known about how the NPY system functions in the motor system. Herein, we investigate post-synaptic NPY signaling on upper motor neurons in the rodent and human motor cortex, and on cortical neuron populations in vitro. Using immunohistochemistry, we show the increased density of NPY-Y1 receptors on the soma of SMI32-positive upper motor neurons in post-mortem ALS cases and SOD1G93A excitatory cortical neurons in vitro. Analysis of receptor density on Thy1-YFP-H-positive upper motor neurons in wild-type and SOD1G93A mouse tissue revealed that the distribution of NPY-Y1 receptors was changed on the apical processes at early-symptomatic and late-symptomatic disease stages. Together, our data demonstrate the differential density of NPY-Y1 receptors on upper motor neurons in a familial model of ALS and in ALS cases, indicating a novel pathway that may be targeted to modulate upper motor neuron activity.