Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 10
  • Item
    Thumbnail Image
    Oxytocin-receptor-expressing neurons in the lateral parabrachial nucleus activate widespread brain regions predominantly involved in fluid satiation.
    Jaramillo, JCM ; Aitken, CM ; Lawrence, AJ ; Ryan, PJ (Elsevier, 2024-04)
    Fluid satiation is an important signal and aspect of body fluid homeostasis. Oxytocin-receptor-expressing neurons (OxtrPBN) in the dorsolateral subdivision of the lateral parabrachial nucleus (dl LPBN) are key neurons which regulate fluid satiation. In the present study, we investigated brain regions activated by stimulation of OxtrPBN neurons in order to better characterise the fluid satiation neurocircuitry in mice. Chemogenetic activation of OxtrPBN neurons increased Fos expression (a proxy marker for neuronal activation) in known fluid-regulating brain nuclei, as well as other regions that have unclear links to fluid regulation and which are likely involved in regulating other functions such as arousal and stress relief. In addition, we analysed and compared Fos expression patterns between chemogenetically-activated fluid satiation and physiological-induced fluid satiation. Both models of fluid satiation activated similar brain regions, suggesting that the chemogenetic model of stimulating OxtrPBN neurons is a relevant model of physiological fluid satiation. A deeper understanding of this neural circuit may lead to novel molecular targets and creation of therapeutic agents to treat fluid-related disorders.
  • Item
    No Preview Available
    Feeding signals inhibit fluid-satiation signals in the mouse lateral parabrachial nucleus to increase intake of highly palatable, caloric solutions
    Aitken, CM ; Jaramillo, JCM ; Davis, W ; Brennan-Xie, L ; Mcdougall, SJ ; Lawrence, AJ ; Ryan, PJ (WILEY, 2023-12)
    Chemogenetic activation of oxytocin receptor-expressing neurons in the parabrachial nucleus (OxtrPBN neurons) acts as a satiation signal for water. In this research, we investigated the effect of activating OxtrPBN neurons on satiation for different types of fluids. Chemogenetic activation of OxtrPBN neurons in male and female transgenic OxtrCre mice robustly suppressed the rapid, initial (15-min) intake of several solutions after dehydration: water, sucrose, ethanol and saccharin, but only slightly decreased intake of Ensure®, a highly caloric solution (1 kcal/mL; containing 3.72 g protein, 3.27 g fat, 13.42 g carbohydrates, and 1.01 g dietary fibre per 100 mL). OxtrPBN neuron activation also suppressed cumulative, longer-term (2-h) intake of lower caloric, less palatable solutions, but not highly caloric, palatable solutions. These results suggest that OxtrPBN neurons predominantly control initial fluid-satiation responses after rehydration, but not longer-term intake of highly caloric, palatable solutions. The suppression of fluid intake was not because of anxiogenesis, but because OxtrPBN neuron activation decreased anxiety-like behaviour. To investigate the role of different PBN subdivisions on the intake of different solutions, we examined FOS as a proxy marker of PBN neuron activation. Different PBN subdivisions were activated by different solutions: the dorsolateral PBN similarly by all fluids; the external lateral PBN by caloric but not non-caloric solutions; and the central lateral PBN primarily by highly palatable solutions, suggesting PBN subdivisions regulate different aspects of fluid intake. To explore the possible mechanisms underlying the minimal suppression of Ensure® after OxtrPBN neuron activation, we demonstrated in in vitro slice recordings that the feeding-associated agouti-related peptide (AgRP) inhibited OxtrPBN neuron firing in a concentration-related manner, suggesting possible inhibition by feeding-related neurocircuitry of fluid satiation neurocircuitry. Overall, this research suggests that although palatable beverages like sucrose- and ethanol-containing beverages activate fluid satiation signals encoded by OxtrPBN neurons, these neurons can be inhibited by hunger-related signals (agouti-related peptide, AgRP), which may explain why these fluids are often consumed in excess of what is required for fluid satiation.
  • Item
    No Preview Available
  • Item
    Thumbnail Image
    Galanin receptors in GtoPdb v.2021.2
    Gundlach, AL ; Ryan, PJ (Edinburgh University Library, 2021-06-25)
    Galanin receptors (provisional nomenclature as recommended by NC-IUPHAR [57]) are activated by the endogenous peptides galanin and galanin-like peptide. Human galanin is a 30 amino-acid non-amidated peptide [52]; in other species, it is 29 amino acids long and C-terminally amidated. Amino acids 1-14 of galanin are highly conserved in mammals, birds, reptiles, amphibia and fish. Shorter peptide species (e.g. human galanin-1-19 [21] and porcine galanin-5–29 [170]) and N-terminally extended forms (e.g. N-terminally seven and nine residue elongated forms of porcine galanin [22, 170]) have been reported. More recently, the newly-identified peptide, spexin (SPX), has been reported to activate human GAL2 and GAL3 (but not GAL1) receptors in heterologous expression systems; and to alter GAL2/3 receptor-related behaviours in animals [89].
  • Item
    Thumbnail Image
    From sensory circumventricular organs to cerebral cortex: Neural pathways controlling thirst and hunger
    McKinley, MJ ; Denton, DA ; Ryan, PJ ; Yao, ST ; Stefanidis, A ; Oldfield, BJ (WILEY, 2019-03)
    Much progress has been made during the past 30 years with respect to elucidating the neural and endocrine pathways by which bodily needs for water and energy are brought to conscious awareness through the generation of thirst and hunger. One way that circulating hormones influence thirst and hunger is by acting on neurones within sensory circumventricular organs (CVOs). This is possible because the subfornical organ and organum vasculosum of the lamina terminalis (OVLT), the sensory CVOs in the forebrain, and the area postrema in the hindbrain lack a normal blood-brain barrier such that neurones within them are exposed to blood-borne agents. The neural signals generated by hormonal action in these sensory CVOs are relayed to several sites in the cerebral cortex to stimulate or inhibit thirst or hunger. The subfornical organ and OVLT respond to circulating angiotensin II, relaxin and hypertonicity to drive thirst-related neural pathways, whereas circulating amylin, leptin and possibly glucagon-like peptide-1 act at the area postrema to influence neural pathways inhibiting food intake. As a result of investigations using functional brain imaging techniques, the insula and anterior cingulate cortex, as well as several other cortical sites, have been implicated in the conscious perception of thirst and hunger in humans. Viral tracing techniques show that the anterior cingulate cortex and insula receive neural inputs from thirst-related neurones in the subfornical organ and OVLT, with hunger-related neurones in the area postrema having polysynaptic efferent connections to these cortical regions. For thirst, initially, the median preoptic nucleus and, subsequently, the thalamic paraventricular nucleus and lateral hypothalamus have been identified as likely sites of synaptic links in pathways from the subfornical organ and OVLT to the cortex. The challenge remains to identify the links in the neural pathways that relay signals originating in sensory CVOs to cortical sites subserving either thirst or hunger.
  • Item
    Thumbnail Image
    The Neurocircuitry of fluid satiation
    Ryan, PJ (WILEY, 2018-06)
    Fluid satiation, or quenching of thirst, is a critical homeostatic signal to stop drinking; however, its underlying neurocircuitry is not well characterized. Cutting-edge genetically encoded tools and techniques are now enabling researchers to pinpoint discrete neuronal populations that control fluid satiation, revealing that hindbrain regions, such as the nucleus of the solitary tract, area postrema, and parabrachial nucleus, primarily inhibit fluid intake. By contrast, forebrain regions such as the lamina terminalis, primarily stimulate thirst and fluid intake. One intriguing aspect of fluid satiation is that thirst is quenched tens of minutes before water reaches the circulation, and the amount of water ingested is accurately calibrated to match physiological needs. This suggests that 'preabsorptive' inputs from the oropharyngeal regions, esophagus or upper gastrointestinal tract anticipate the amount of fluid required to restore fluid homeostasis, and provide rapid signals to terminate drinking once this amount has been consumed. It is likely that preabsorptive signals are carried via the vagal nerve to the hindbrain. In this review, we explore our current understanding of the fluid satiation neurocircuitry, its inputs and outputs, and its interconnections within the brain, with a focus on recent studies of the hindbrain, particularly the parabrachial nucleus.
  • Item
    No Preview Available
    Oxytocin-receptor-expressing neurons in the parabrachial nucleus regulate fluid intake
    Ryan, PJ ; Ross, SI ; Campos, CA ; Derkach, VA ; Palmiter, RD (NATURE PUBLISHING GROUP, 2017-12)
    Brain regions that regulate fluid satiation are not well characterized, yet are essential for understanding fluid homeostasis. We found that oxytocin-receptor-expressing neurons in the parabrachial nucleus of mice (OxtrPBN neurons) are key regulators of fluid satiation. Chemogenetic activation of OxtrPBN neurons robustly suppressed noncaloric fluid intake, but did not decrease food intake after fasting or salt intake following salt depletion; inactivation increased saline intake after dehydration and hypertonic saline injection. Under physiological conditions, OxtrPBN neurons were activated by fluid satiation and hypertonic saline injection. OxtrPBN neurons were directly innervated by oxytocin neurons in the paraventricular hypothalamus (OxtPVH neurons), which mildly attenuated fluid intake. Activation of neurons in the nucleus of the solitary tract substantially suppressed fluid intake and activated OxtrPBN neurons. Our results suggest that OxtrPBN neurons act as a key node in the fluid satiation neurocircuitry, which acts to decrease water and/or saline intake to prevent or attenuate hypervolemia and hypernatremia.
  • Item
    Thumbnail Image
    Should multiple imputation be the method of choice for handling missing data in randomized trials?
    Sullivan, TR ; White, IR ; Salter, AB ; Ryan, P ; Lee, KJ (SAGE PUBLICATIONS LTD, 2018-09)
    The use of multiple imputation has increased markedly in recent years, and journal reviewers may expect to see multiple imputation used to handle missing data. However in randomized trials, where treatment group is always observed and independent of baseline covariates, other approaches may be preferable. Using data simulation we evaluated multiple imputation, performed both overall and separately by randomized group, across a range of commonly encountered scenarios. We considered both missing outcome and missing baseline data, with missing outcome data induced under missing at random mechanisms. Provided the analysis model was correctly specified, multiple imputation produced unbiased treatment effect estimates, but alternative unbiased approaches were often more efficient. When the analysis model overlooked an interaction effect involving randomized group, multiple imputation produced biased estimates of the average treatment effect when applied to missing outcome data, unless imputation was performed separately by randomized group. Based on these results, we conclude that multiple imputation should not be seen as the only acceptable way to handle missing data in randomized trials. In settings where multiple imputation is adopted, we recommend that imputation is carried out separately by randomized group.
  • Item
    Thumbnail Image
    Change in Blood Pressure Variability Among Treated Elderly Hypertensive Patients and Its Association With Mortality
    Chowdhury, EK ; Nelson, MR ; Wing, LMH ; Jennings, GLR ; Beilin, LJ ; Reid, CM ; Nelson, M ; Bruce, A ; Beckinsale, P ; Thompson, J ; McMurchie, M ; Fraser, G ; Gleave, D ; Cope, V ; DeLooze, F ; Moore, S ; Dibben, C ; Newbury, J ; Miles, H ; McDermott, B ; Willson, K ; Bear, C ; West, M ; Harrap, S ; Johnston, C ; Beilin, L ; Ryan, P ; Wing, L ; Reid, C ; Brown, M ; Jennings, G ; Fletcher, P ; Feneley, M ; Dewar, E ; McNeil, J ; Marley, J ; Moss, J ; Webb, P ; Glasziou, P ; Boyle, F ; Primrose, J ; Steven, I ; Piterman, L ; De Looze, F ; Dickinson, J ; Gambrill, J ; Joseph, P ; Hunt, D ; Donnan, G ; Morgan, T ; Chalmers, J ; Whitworth, J ; MacMahon, S ; Silagy, C (WILEY, 2019-11-05)
    Background Information is scarce regarding effects of antihypertensive medication on blood pressure variability (BPV) and associated clinical outcomes. We examined whether antihypertensive treatment changes BPV over time and whether such change (decline or increase) has any association with long-term mortality in an elderly hypertensive population. Methods and Results We used data from a subset of participants in the Second Australian National Blood Pressure study (n=496) aged ≥65 years who had 24-hour ambulatory blood pressure recordings at study entry (baseline) and then after a median of 2 years while on treatment (follow-up). Weighted day-night systolic BPV was calculated for both baseline and follow-up as a weighted mean of daytime and nighttime blood pressure standard deviations. The annual rate of change in BPV over time was calculated from these BPV estimates. Furthermore, we classified both BPV estimates as high and low based on the baseline median BPV value and then classified BPV changes into stable: low BPV, stable: high BPV, decline: high to low, and increase: low to high. We observed an annual decline (mean±SD: -0.37±1.95; 95% CI, -0.54 to -0.19; P<0.001) in weighted day-night systolic BPV between baseline and follow-up. Having constant stable: high BPV was associated with an increase in all-cause mortality (hazard ratio: 3.03; 95% CI, 1.67-5.52) and cardiovascular mortality (hazard ratio: 3.70; 95% CI, 1.62-8.47) in relation to the stable: low BPV group over a median 8.6 years after the follow-up ambulatory blood pressure monitoring. Similarly, higher risk was observed in the decline: high to low group. Conclusions Our results demonstrate that in elderly hypertensive patients, average BPV declined over 2 years of follow-up after initiation of antihypertensive therapy, and having higher BPV (regardless of any change) was associated with increased long-term mortality.
  • Item
    Thumbnail Image
    Relaxin-3 mRNA levels in nucleus incertus correlate with alcohol and sucrose intake in rats
    Ryan, PJ ; Krstew, EV ; Sarwar, M ; Gundlach, AL ; Lawrence, AJ (ELSEVIER IRELAND LTD, 2014-07-01)
    BACKGROUND: Chronic alcohol intake produces multiple neuroadaptive changes, including up- and down-regulation of neuropeptides and receptors. There are widespread projections of relaxin-3 containing neurons to, and abundant relaxin family peptide 3 receptor (RXFP3) expression within, brain regions involved in modulating alcohol intake. Recently we demonstrated the involvement of relaxin-3/RXFP3 signalling in alcohol-seeking in rats; therefore in this study we examined whether relaxin-3 and/or RXFP3 expression were altered by chronic alcohol intake in alcohol-preferring iP rats. METHODS: Expression of relaxin-3 mRNA in the hindbrain nucleus incertus and RXFP3 radioligand binding levels in discrete forebrain regions were investigated following voluntary intake of alcohol or sucrose for 12 weeks, with a 2 day washout, using quantitative in situ hybridisation histochemistry and in vitro receptor autoradiography, respectively, in cohorts of adult, male iP rats. RESULTS: Levels of relaxin-3 mRNA in the hindbrain nucleus incertus were positively correlated with the level of intake of both alcohol (r(12)=0.59, p=0.03) and sucrose (r(7)=0.70, p=0.04) in iP rats. Dense binding of the RXFP3-selective radioligand, [(125)]-R3/I5, was detected in hypothalamic and extrahypothalamic sites, but no significant changes in the density of RXFP3 were observed in the brain regions quantified following chronic sucrose or ethanol intake. CONCLUSIONS: Our findings suggest high endogenous relaxin-3 expression may be associated with higher intake of rewarding substances, rather than its expression being regulated in response to their intake, consistent with an active role for the relaxin-3/RXFP3 system in modulating ingestive and alcohol-related behaviours.