Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    No Preview Available
    Tailored behavioural tests reveal early and progressive cognitive deficits in M1000 prion disease
    Senesi, M ; Lewis, V ; Adlard, PA ; Finkelstein, DI ; Kim, JH ; Collins, SJ (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2023-05)
    Prion diseases are pathogenically linked to the normal cellular prion protein (PrPC) misfolding into abnormal conformers (PrPSc), with PrPSc accumulation underpinning both transmission and neurotoxicity. Despite achieving this canonical understanding, however fundamental questions remain incompletely resolved, including the level of pathophysiological overlap between neurotoxic and transmitting species of PrPSc and the temporal profiles of their propagation. To further investigate the likely time of occurrence of significant levels of neurotoxic species during prion disease development, the well characterised in vivo M1000 murine model was employed. Following intracerebral inoculation, detailed serial cognitive and ethological testing at specified time points suggested subtle transition to early symptomatic disease from ∼50% of the overall disease course. In addition to observing a chronological order for impaired behaviours, different behavioural tests also showed distinctive profiles of evolving cognitive impairments with the Barnes maze demonstrating a relatively simple linear worsening of spatial learning and memory over an extended period while in contrast a conditioned fear memory paradigm previously untested in murine prion disease demonstrated more complex alterations during disease progression. These observations support the likely production of neurotoxic PrPSc from at least just prior to the mid-point of murine M1000 prion disease and illustrate the likely need to tailor the types of behavioural testing across the time course of disease progression for optimal detection of cognitive deficits.
  • Item
    Thumbnail Image
    Cerebrospinal fluid neurofilament light chain differentiates primary psychiatric disorders from rapidly progressive, Alzheimer's disease and frontotemporal disorders in clinical settings
    Eratne, D ; Loi, SM ; Qiao-Xin, L ; Stehmann, C ; Malpas, CB ; Santillo, A ; Janelidze, S ; Cadwallader, C ; Walia, N ; Ney, B ; Lewis, V ; Senesi, M ; Fowler, C ; McGlade, A ; Varghese, S ; Ravanfar, P ; Kelso, W ; Farrand, S ; Keem, M ; Kang, M ; Goh, AMY ; Dhiman, K ; Gupta, V ; Watson, R ; Yassi, N ; Kaylor-Hughes, C ; Kanaan, R ; Perucca, P ; Dobson, H ; Vivash, L ; Ali, R ; O'Brien, TJ ; Hansson, O ; Zetterberg, H ; Blennow, K ; Walterfang, M ; Masters, CL ; Berkovic, SF ; Collins, S ; Velakoulis, D (WILEY, 2022-11)
    INTRODUCTION: Many patients with cognitive and neuropsychiatric symptoms face diagnostic delay and misdiagnosis. We investigated whether cerebrospinal fluid (CSF) neurofilament light (NfL) and total-tau (t-tau) could assist in the clinical scenario of differentiating neurodegenerative (ND) from psychiatric disorders (PSY), and rapidly progressive disorders. METHODS: Biomarkers were examined in patients from specialist services (ND and PSY) and a national Creutzfeldt-Jakob registry (Creutzfeldt-Jakob disease [CJD] and rapidly progressive dementias/atypically rapid variants of common ND, RapidND). RESULTS: A total of 498 participants were included: 197 ND, 67 PSY, 161 CJD, 48 RapidND, and 20 controls. NfL was elevated in ND compared to PSY and controls, with highest levels in CJD and RapidND. NfL distinguished ND from PSY with 95%/78% positive/negative predictive value, 92%/87% sensitivity/specificity, 91% accuracy. NfL outperformed t-tau in most real-life clinical diagnostic dilemma scenarios, except distinguishing CJD from RapidND. DISCUSSION: We demonstrated strong generalizable evidence for the diagnostic utility of CSF NfL in differentiating ND from psychiatric disorders, with high accuracy.
  • Item
    No Preview Available
    Erratum to: Creutzfeldt-Jakob disease surveillance in Australia: update to 31 December 2020.
    Stehmann, C ; Senesi, M ; Sarros, S ; McGlade, A ; Lewis, V ; Simpson, M ; Klug, G ; McLean, C ; Masters, CL ; Collins, SJ (Australian Government Department of Health and Aged Care, 2021-08-09)
    Erratum to Commun Dis Intell (2018) 2021;45 (https://doi.org/10.33321/cdi.2021.45.38).
  • Item
    No Preview Available
    Creutzfeldt-Jakob disease surveillance in Australia: update to 31 December 2020 (vol 22, 45, 2021)
    Stehmann, C ; Senesi, M ; Sarros, S ; McGlade, A ; Lewis, V ; Simpson, M ; Klug, G ; McLean, C ; Masters, CL ; Collins, S (AUSTRALIAN GOVERNMENT, DEPT HEALTH & AGEING, 2021-08-09)
    Nationwide surveillance of Creutzfeldt-Jakob disease and other human prion diseases is performed by the Australian National Creutzfeldt-Jakob Disease Registry (ANCJDR). National surveillance encompasses the period since 1 January 1970, with prospective surveillance occurring from 1 October 1993. Over this prospective surveillance period, considerable developments have occurred in pre-mortem diagnostics; in the delineation of new disease subtypes; and in a heightened awareness of prion diseases in healthcare settings. Surveillance practices of the ANCJDR have evolved and adapted accordingly. This report summarises the activities of the ANCJDR during 2020. Since the ANCJDR began offering diagnostic cerebrospinal fluid (CSF) 14-3-3 protein testing in Australia in September 1997, the annual number of referrals has steadily increased. In 2020, 510 domestic CSF specimens were referred for 14-3-3 protein testing and 85 persons with suspected human prion disease were formally added to the national register. As of 31 December 2020, just over half (44 cases) of the 85 suspect case notifications remain classified as 'incomplete'; 27 cases were excluded through either detailed clinical follow-up (9 cases) or neuropathological examination (18 cases); 18 cases were classified as 'definite' and eleven as 'probable' prion disease. For 2020, sixty percent of all suspected human-prion-disease-related deaths in Australia underwent neuropathological examination. No cases of variant or iatrogenic CJD were identified. The SARS-CoV-2 pandemic did not affect prion disease surveillance outcomes in Australia.
  • Item
    No Preview Available
    Creutzfeldt-Jakob disease surveillance in Australia: update to 31 December
    Stehmann, C ; Senesi, M ; Sarros, S ; McGlade, A ; Simpson, M ; Klug, G ; McLean, C ; Masters, CL ; Collins, S (AUSTRALIAN GOVERNMENT, DEPT HEALTH & AGEING, 2020-07-14)
    Nationwide surveillance of Creutzfeldt-Jakob disease and other human prion diseases is performed by the Australian National Creutzfeldt-Jakob Disease Registry (ANCJDR). National surveillance encompasses the period since 1 January 1970, with prospective surveillance occurring from 1 October 1993. Over this prospective surveillance period, considerable developments have occurred in pre-mortem diagnostics; in the delineation of new disease subtypes; and in a heightened awareness of prion diseases in healthcare settings. Surveillance practices of the ANCJDR have evolved and adapted accordingly. This report summarises the activities of the ANCJDR during 2019. Since the ANCJDR began offering diagnostic cerebrospinal fluid (CSF) 14-3-3 protein testing in Australia in September 1997, the annual number of referrals has steadily increased. In 2019, 513 domestic CSF specimens were referred for 14-3-3 protein testing and 85 persons with suspected human prion disease were formally added to the national register. As of 31 December 2019, just under half (42 cases) of the 85 suspect case notifications remain classified as 'incomplete'; 16 cases were excluded through either detailed clinical follow-up (3 cases) or neuropathological examination (13 cases); 20 cases were classified as 'definite' and seven as 'probable' prion disease. For 2019, sixty-three percent of all suspected human prion disease related deaths in Australia underwent neuropathological examination. No cases of variant or iatrogenic CJD were identified. Two possibly causal novel prion protein gene (PRNP) sequence variations were identified.
  • Item
    Thumbnail Image
    Prion acute synaptotoxicity is largely driven by protease-resistant PrPSc species
    Foliaki, ST ; Lewis, V ; Finkelstein, DI ; Lawson, V ; Coleman, HA ; Senesi, M ; Islam, AMT ; Chen, F ; Sarros, S ; Roberts, B ; Adlard, PA ; Collins, SJ ; Westaway, D (PUBLIC LIBRARY SCIENCE, 2018-08)
    Although misfolding of normal prion protein (PrPC) into abnormal conformers (PrPSc) is critical for prion disease pathogenesis our current understanding of the underlying molecular pathophysiology is rudimentary. Exploiting an electrophysiology paradigm, herein we report that at least modestly proteinase K (PK)-resistant PrPSc (PrPres) species are acutely synaptotoxic. Brief exposure to ex vivo PrPSc from two mouse-adapted prion strains (M1000 and MU02) prepared as crude brain homogenates (cM1000 and cMU02) and cell lysates from chronically M1000-infected RK13 cells (MoRK13-Inf) caused significant impairment of hippocampal CA1 region long-term potentiation (LTP), with the LTP disruption approximating that reported during the evolution of murine prion disease. Proof of PrPSc (especially PrPres) species as the synaptotoxic agent was demonstrated by: significant rescue of LTP following selective immuno-depletion of total PrP from cM1000 (dM1000); modestly PK-treated cM1000 (PK+M1000) retaining full synaptotoxicity; and restoration of the LTP impairment when employing reconstituted, PK-eluted, immuno-precipitated M1000 preparations (PK+IP-M1000). Additional detailed electrophysiological analyses exemplified by impairment of post-tetanic potentiation (PTP) suggest possible heightened pre-synaptic vulnerability to the acute synaptotoxicity. This dysfunction correlated with cumulative insufficiency of replenishment of the readily releasable pool (RRP) of vesicles during repeated high-frequency stimulation utilised for induction of LTP. Broadly comparable results with LTP and PTP impairment were obtained utilizing hippocampal slices from PrPC knockout (PrPo/o) mice, with cM1000 serial dilution assessments revealing similar sensitivity of PrPo/o and wild type (WT) slices. Size fractionation chromatography demonstrated that synaptotoxic PrP correlated with PK-resistant species >100kDa, consistent with multimeric PrPSc, with levels of these species >6 ng/ml appearing sufficient to induce synaptic dysfunction. Biochemical analyses of hippocampal slices manifesting acute synaptotoxicity demonstrated reduced levels of multiple key synaptic proteins, albeit with noteworthy differences in PrPo/o slices, while such changes were absent in hippocampi demonstrating rescued LTP through treatment with dM1000. Our findings offer important new mechanistic insights into the synaptic impairment underlying prion disease, enhancing prospects for development of targeted effective therapies.
  • Item
    Thumbnail Image
    Early existence and biochemical evolution characterise acutely synaptotoxic PrPSc
    Foliaki, ST ; Lewis, V ; Islam, AMT ; Ellett, LJ ; Senesi, M ; Finkelstein, DI ; Roberts, B ; Lawson, VA ; Adlard, PA ; Collins, SJ ; Westaway, D (PUBLIC LIBRARY SCIENCE, 2019-04)
    Although considerable evidence supports that misfolded prion protein (PrPSc) is the principal component of "prions", underpinning both transmissibility and neurotoxicity, clear consensus around a number of fundamental aspects of pathogenesis has not been achieved, including the time of appearance of neurotoxic species during disease evolution. Utilizing a recently reported electrophysiology paradigm, we assessed the acute synaptotoxicity of ex vivo PrPSc prepared as crude homogenates from brains of M1000 infected wild-type mice (cM1000) harvested at time-points representing 30%, 50%, 70% and 100% of the terminal stage of disease (TSD). Acute synaptotoxicity was assessed by measuring the capacity of cM1000 to impair hippocampal CA1 region long-term potentiation (LTP) and post-tetanic potentiation (PTP) in explant slices. Of particular note, cM1000 from 30% of the TSD was able to cause significant impairment of LTP and PTP, with the induced failure of LTP increasing over subsequent time-points while the capacity of cM1000 to induce PTP failure appeared maximal even at this early stage of disease progression. Evidence that the synaptotoxicity directly related to PrP species was demonstrated by the significant rescue of LTP dysfunction at each time-point through immuno-depletion of >50% of total PrP species from cM1000 preparations. Moreover, similar to our previous observations at the terminal stage of M1000 prion disease, size fractionation chromatography revealed that capacity for acute synpatotoxicity correlated with predominance of oligomeric PrP species in infected brains across all time points, with the profile appearing maximised by 50% of the TSD. Using enhanced sensitivity western blotting, modestly proteinase K (PK)-resistant PrPSc was detectable at very low levels in cM1000 at 30% of the TSD, becoming robustly detectable by 70% of the TSD at which time substantial levels of highly PK-resistant PrPSc was also evident. Further illustrating the biochemical evolution of acutely synaptotoxic species the synaptotoxicity of cM1000 from 30%, 50% and 70% of the TSD, but not at 100% TSD, was abolished by digestion of immuno-captured PrP species with mild PK treatment (5μg/ml for an hour at 37°C), demonstrating that the predominant synaptotoxic PrPSc species up to and including 70% of the TSD were proteinase-sensitive. Overall, these findings in combination with our previous assessments of transmitting prions support that synaptotoxic and infectious M1000 PrPSc species co-exist from at least 30% of the TSD, simultaneously increasing thereafter, albeit with eventual plateauing of transmitting conformers.