Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Reassessment of amphetamine- and phencyclidine-induced locomotor hyperactivity as a model of psychosis-like behavior in rats
    Kusljic, S ; van den Buuse, M ; Gogos, A (IMR PRESS, 2022-01-28)
    Locomotor hyperactivity induced by psychotomimetic drugs, such as amphetamine and phencyclidine, is widely used as an animal model of psychosis-like behaviour and is commonly attributed to an interaction with dopamine release and N-methyl-D-aspartate (NMDA) receptors, respectively. However, what is often not sufficiently taken into account is that the pharmacological profile of these drugs is complex and may involve other neurotransmitter/receptor systems. Therefore, this study aimed to assess the effect of three antagonists targeting different monoamine pathways on amphetamine- and phencyclidine-induced locomotor hyperactivity. A total of 32 rats were pre-treated with antagonists affecting dopaminergic, noradrenergic and serotonergic transmission: haloperidol (0.05 mg/kg), prazosin (2 mg/kg) and ritanserin (1 mg/kg), respectively. After 30 min of spontaneous activity, rats were injected with amphetamine (0.5 mg/kg) or phencyclidine (2.5 mg/kg) and distance travelled, stereotypy and rearing recorded in photocell cages over 90 min. Pre-treatment with haloperidol or prazosin both reduced amphetamine-induced hyperactivity although pre-treatment with ritanserin had only a partial effect. None of the pre-treatments significantly altered the hyperlocomotion effects of phencyclidine. These findings suggest that noradrenergic as well as dopaminergic neurotransmission is critical for amphetamine-induced locomotor hyperactivity. Hyperlocomotion effects of phencyclidine are dependent on other factors, most likely NMDA receptor antagonism. These results help to interpret psychotomimetic drug-induced locomotor hyperactivity as an experimental model of psychosis.
  • Item
    Thumbnail Image
    Sex differences in the effect of maternal immune activation on cognitive and psychosis-like behaviour in Long Evans rats
    Gogos, A ; Sbisa, A ; Witkamp, D ; van den Buuse, M (WILEY, 2020-07)
    Maternal immune activation during pregnancy is associated with increased risk of development of schizophrenia in later life. There are sex differences in schizophrenia, particularly in terms of age of onset, course of illness and severity of symptoms. However, there is limited and inconsistent literature on sex differences in the effects of maternal immune activation on behaviour with relevance to schizophrenia. The aim of this study was therefore to investigate sex differences in the effects of maternal immune activation by treating Long Evans rats with poly(I:C) on gestational day 15. We compared adult male and female offspring on spatial working memory in the touchscreen trial-unique nonmatching-to-location task, pairwise discrimination and reversal learning, as well as on prepulse inhibition and psychotropic drug-induced locomotor hyperactivity. Male, but not female poly(I:C) offspring displayed a deficit in spatial working memory, particularly at the longer delay. Neither pairwise discrimination nor reversal learning showed an effect of poly(I:C), but female controls outperformed male controls in the reversal learning task. Significant reduction of prepulse inhibition and enhancement of acute methamphetamine-induced locomotor hyperactivity was found similarly in male and female poly(I:C) offspring. These results show that maternal immune activation induces a range of behavioural effects in the offspring, with sex specificity in the effects of maternal immune activation on some aspects of cognition, but not psychosis-like behaviour.
  • Item
    Thumbnail Image
    Brain-Derived Neurotrophic Factor Val66Met polymorphism interacts with adolescent stress to alter hippocampal interneuron density and dendritic morphology in mice
    Hill, RA ; Grech, AM ; Notaras, MJ ; Sepulveda, M ; van den Buuse, M (ELSEVIER SCIENCE INC, 2020-11)
    Brain-derived neurotrophic factor (BDNF) plays essential roles in GABAergic interneuron development. The common BDNF val66met polymorphism, leads to decreased activity-dependent release of BDNF. The current study used a humanized mouse model of the BDNF val66met polymorphism to determine how reduced activity-dependent release of BDNF, both on its own, and in combination with chronic adolescent stress hormone, impact hippocampal GABAergic interneuron cell density and dendrite morphology. Male and female Val/Val and Met/Met mice were exposed to corticosterone (CORT) or placebo in their drinking water from weeks 6-8, before brains were perfuse-fixed at 15 weeks. Cell density and dendrite morphology of immunofluorescent labelled inhibitory interneurons; somatostatin, parvalbumin and calretinin in the CA1, and 3 and dentate gyrus (DG) across the dorsal (DHP) and ventral hippocampus (VHP) were assessed by confocal z-stack imaging, and IMARIS dendritic mapping software. Mice with the Met/Met genotype showed significantly lower somatostatin cell density compared to Val/Val controls in the DHP, and altered somatostatin interneuron dendrite morphology including branch depth, and spine density. Parvalbumin-positive interneurons were unchanged between genotype groups, however BDNF val66met genotype influenced the dendritic volume, branch level and spine density of parvalbumin interneurons differentially across hippocampal subregions. Contrary to this, no such effects were observed for calretinin-positive interneurons. Adolescent exposure to CORT treatment also significantly altered somatostatin and parvalbumin dendrite branch level and the combined effect of Met/Met genotype and CORT treatment significantly reduced somatostatin and parvalbumin dendrite spine density. In sum, the BDNFVal66Met polymorphism significantly alters somatostatin and parvalbumin-positive interneuron cell development and dendrite morphology. Additionally, we also report a compounding effect of the Met/Met genotype and chronic adolescent CORT treatment on dendrite spine density, indicating that adolescence is a sensitive period of risk for Val66Met polymorphism carriers.
  • Item
    Thumbnail Image
    The effect of 17β-estradiol on maternal immune activation-induced changes in prepulse inhibition and dopamine receptor and transporter binding in female rats
    Sbisa, A ; Kusljic, S ; Zethoven, D ; van den Buuse, M ; Gogos, A (ELSEVIER, 2020-09)
    Maternal immune activation (MIA) during pregnancy is associated with an increased risk of development of schizophrenia in later life. 17β-estradiol treatment may improve schizophrenia symptoms, but little is known about its efficacy on MIA-induced psychosis-like behavioural deficits in animals. Therefore, in this study we used the poly(I:C) neurodevelopmental model of schizophrenia to examine whether MIA-induced psychosis-like behavioural and neurochemical changes can be attenuated by chronic treatment (2-6 weeks) with 17β-estradiol. Pregnant rats were treated with saline or the viral mimetic, poly(I:C), on gestational day 15 and adult female offspring were tested for changes in prepulse inhibition (PPI) and density of dopamine D1 and D2 receptors and dopamine transporters in the forebrain compared to control offspring. Poly(I:C)-treated offspring exhibited significantly disrupted PPI, an effect which was reversed by chronic treatment with 17β-estradiol. In control offspring, but not poly(I:C) offspring, PPI was significantly reduced by acute treatment with either the dopamine D1/D2 receptor agonist, apomorphine, or dopamine releaser, methamphetamine. 17β-estradiol restored the effect of apomorphine, but not methamphetamine, on PPI in poly(I:C) offspring. There was a strong trend for a dopamine D2 receptor binding density increase in the nucleus accumbens core region in poly(I:C) offspring, and this was reversed by chronic 17β-estradiol treatment. No changes were found in the nucleus accumbens shell, caudate putamen or frontal cortex or in the density of dopamine D1 receptors or transporters. These findings suggest that 17β-estradiol may improve some symptoms of schizophrenia, an effect that may be mediated by selective changes in dopamine D2 receptor density.
  • Item
    Thumbnail Image
    Pharmacological Mechanisms Involved in Sensory Gating Disruption Induced by (±)-3,4-Methylene- Dioxymethamphetamine (MDMA): Relevance to Schizophrenia
    Lee, J ; Thwaites, S ; Gogos, A ; van den Buuse, M (MDPI, 2020-01)
    Sensory gating deficits have been demonstrated in schizophrenia, but the mechanisms involved remain unclear. In the present study, we used disruption of paired-pulse gating of evoked potentials in rats by the administration of (±)-3,4-methylene-dioxymethamphetamine (MDMA) to study serotonergic and dopaminergic mechanisms involved in auditory sensory gating deficits. Male Sprague-Dawley rats were instrumented with cortical surface electrodes to record evoked potential changes in response to pairs of 85dB tones (S1 and S2), 500msec apart. Administration of MDMA eliminated the normal reduction in the amplitude of S2 compared to S1, representing disruption of auditory sensory gating. Pretreatment of the animals with the dopamine D1 receptor antagonist, SCH23390, the dopamine D2 receptor antagonist, haloperidol, the serotonin (5-HT)1A receptor antagonist, WAY100635, or the 5-HT2A receptor antagonist, ketanserin, all blocked the effect of MDMA, although the drugs differentially affected the individual S1 and S2 amplitudes. These data show involvement of both dopaminergic and serotonergic mechanisms in disruption of auditory sensory gating by MDMA. These and previous results suggest that MDMA targets serotonergic pathways, involving both 5-HT1A and 5-HT2A receptors, leading to dopaminergic activation, involving both D1 and D2 receptors, and ultimately sensory gating deficits. It is speculated that similar interactive mechanisms are affected in schizophrenia.