Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 38
  • Item
    No Preview Available
    Generation and analysis of Siah2 mutant mice
    Frew, IJ ; Hammond, VE ; Dickins, RA ; Quinn, JMW ; Walkley, CR ; Sims, NA ; Schnall, R ; Della, NG ; Holloway, AJ ; Digby, MR ; Janes, PW ; Tarlinton, DM ; Purton, LE ; Gillespie, MT ; Bowtell, DDL (AMER SOC MICROBIOLOGY, 2003-12)
    Siah proteins function as E3 ubiquitin ligase enzymes to target the degradation of diverse protein substrates. To characterize the physiological roles of Siah2, we have generated and analyzed Siah2 mutant mice. In contrast to Siah1a knockout mice, which are growth retarded and exhibit defects in spermatogenesis, Siah2 mutant mice are fertile and largely phenotypically normal. While previous studies implicate Siah2 in the regulation of TRAF2, Vav1, OBF-1, and DCC, we find that a variety of responses mediated by these proteins are unaffected by loss of Siah2. However, we have identified an expansion of myeloid progenitor cells in the bone marrow of Siah2 mutant mice. Consistent with this, we show that Siah2 mutant bone marrow produces more osteoclasts in vitro than wild-type bone marrow. The observation that combined Siah2 and Siah1a mutation causes embryonic and neonatal lethality demonstrates that the highly homologous Siah proteins have partially overlapping functions in vivo.
  • Item
    Thumbnail Image
    Very early mobilization following acute stroke: Controversies, the unknowns, and a way forward
    Bernhardt, J (WOLTERS KLUWER MEDKNOW PUBLICATIONS, 2008-01)
    UNLABELLED: Evidence that organized stroke-unit care results in better outcome has led to positive changes in stroke service delivery around the world. It is well accepted that stroke rehabilitation should commence as early as possible for optimal recovery to be achieved. Exactly how early rehabilitation should start is controversial. Early mobilization (getting up out of bed within 24 h of stroke onset) is a wellestablished feature of acute stroke care in many Scandinavian hospitals. Elsewhere in the world, stroke protocols enforce bed rest for the first few days or foster long periods of bed rest after stroke. This paper aims to provide an overview of the topic of very early mobilization (VEM). It is divided into three sections: section 1 reviews the effects of bed rest and outlines arguments both for and against enforced bed rest after stroke; in section 2, VEM as a treatment for stroke and the limitations of existing literature in the field are described; and section 3 outlines the systematic approach that has been taken by our team of clinical researchers to the study the effect of VEM after stroke. CONCLUSION: VEM represents a simple, easy-to-deliver intervention, requiring little or no equipment. It is potentially deliverable to 85% of the acute stroke population and, if proven to be effective, may help reduce the significant personal and community burden of stroke. As current opinion about when mobilization should begin is divided, one way to move forward is through the conduct of a large high-quality clinical trial (such as A Very Early Rehabilitation Trial (AVERT)). Although some inroads have been made, further research in this field is clearly warranted.
  • Item
    Thumbnail Image
    EphA4 (Sek1) receptor tyrosine kinase is required for the development of the corticospinal tract
    Dottori, M ; Hartley, L ; Galea, M ; Paxinos, G ; Polizzotto, M ; Kilpatrick, T ; Bartlett, PF ; Murphy, M ; Köntgen, F ; Boyd, AW (NATL ACAD SCIENCES, 1998-10-27)
    Members of the Eph family of tyrosine kinase receptors have been implicated in the regulation of developmental processes and, in particular, axon guidance in the developing nervous system. The function of the EphA4 (Sek1) receptor was explored through creation of a null mutant mouse. Mice with a null mutation in the EphA4 gene are viable and fertile but have a gross motor dysfunction, which is evidenced by a loss of coordination of limb movement and a resultant hopping, kangaroo-like gait. Consistent with the observed phenotype, anatomical studies and anterograde tracing experiments reveal major disruptions of the corticospinal tract within the medulla and spinal cord in the null mutant animals. These results demonstrate a critical role for EphA4 in establishing the corticospinal projection.
  • Item
    Thumbnail Image
    5-fluorouracil steady state pharmacokinetics and outcome in patients receiving protracted venous infusion for advanced colorectal cancer
    Jodrell, DI ; Stewart, M ; Aird, R ; Knowles, G ; Bowman, A ; Wall, L ; Cummings, J ; McLean, C (NATURE PUBLISHING GROUP, 2001-03-02)
    PVI 5FU gives increased response rates and reduced toxicity when compared to bolus 5FU (J Clin Oncol 1989, 425-432). PVI 5FU administration was reported to give highly variable (>1000-fold) plasma 5FU concentrations at steady state (FU Css) which correlated with toxicity (Ann Oncol 1996, 47-53); but only 19 patients were studied. Therefore, we performed a study of PVI 5FU in 61 patients with advanced colorectal cancer to assess the variability (inter- and intra-subject) in 5FU Css associated with PVI 5FU (300 mg m(-2)day(-1)) and to attempt to correlate pharmacodynamic end-points (anti-tumour activity, toxicity) with 5FU Css as a prelude to 'exposure-guided' 5FU administration. All 5FU sampling was performed between 10 am and noon. PVI 5FU administration continued to 26 weeks in patients with disease improvement or stabilization. The response rate was 26% (33% stable disease) and median survival was 11 months. Hand-foot syndrome was the most common dose limiting toxicity. Variability in 5FU(300)Css was considerably less than previously reported; 94 +/- 25 ng ml(-1)(CV = 27%). No relationships were demonstrated between subject mean 5FU(300)Css and PD end-points such as response, mucositis, diarrhoea and hand-foot syndrome. The lack of correlation suggests that measurement of 5FU concentrations should not be used to individualize dosing in patients receiving PVI 5FU for advanced colorectal cancer.
  • Item
    Thumbnail Image
    Modulation of the equilibrative nucleoside transporter by inhibitors of DNA synthesis.
    Pressacco, J ; Wiley, JS ; Jamieson, GP ; Erlichman, C ; Hedley, DW (Springer Science and Business Media LLC, 1995-10)
    Expression of the equilibrative, S-(p-nitrobenzyl)-6-thioinosine (NBMPR)-sensitive nucleoside transporter (es), a component of the nucleoside salvage pathway, was measured during unperturbed growth and following exposure to various antimetabolites at growth-inhibitory concentrations. The probe 5-(SAENTA-x8)-fluorescein is a highly modified form of adenosine incorporating a fluorescein molecule. It binds. with high affinity and specificity to the (es) nucleoside transporter at a 1:1 stoichiometry, allowing reliable estimates of es expression by flow cytometry. Using a dual labelling technique which combined the vital DNA dye Hoechst-33342 and 5-(SAENTA-x8)-fluorescein, we found that surface expression of es approximately doubled between G1 and G2 + M phases of the cell cycle. To address the question of whether es expression could be modulated in cells exposed to drugs which inhibit de novo synthesis of nucleotides, cells were exposed to antimetabolite drugs having different modes of action. Hydroxyurea and 5-fluorouracil (5-FU), which inhibit the de novo synthesis of DNA precursors, produced increases in the expression of es. In contrast, cytosine arabinoside (ara-C) and aphidicolin, which directly inhibit DNA synthesis, produced no significant increase in es expression. Thymidine (TdR), which is an allosteric inhibitor of ribonucleotide reductase that depletes dATP, dCTP and dGTP pools while repleting the dTTP pool, had no significant effect on es expression. These data suggest that surface expression of the es nucleoside transporter is regulated by a mechanism which is sensitive to the supply of deoxynucleotides. Because 5-FU (which specifically depletes dTTP pools) causes a large increase in expression whereas TdR (which depletes all precursors except dTTP) does not, this mechanism might be particularly sensitive to dTTP pools.
  • Item
    No Preview Available
    Metals and Alzheimer's disease
    Adlard, PA ; Bush, AI (IOS PRESS, 2006-11)
    There is increasing evidence to support a role for both the amyloid beta-protein precursor (AbetaPP) and its proteolytic fragment, amyloid beta (Abeta), in metal ion homeostasis. Furthermore, metal ions such as zinc and copper can interact with both AbetaPP and Abeta to potentiate Alzheimer's disease by participating in the aggregation of these normal cellular proteins and in the generation of reactive oxygen species. In addition, metal ions may interact on several other AD-related pathways, including those involved in neurofibrillary tangle formation, secretase cleavage of AbetaPP and proteolytic degradation of Abeta. As such, a dysregulation of metal ion homeostasis, as occurs with both aging and in AD, may foster an environment that can both precipitate and accelerate degenerative conditions such as AD. This offers a broad biochemical front for novel therapeutic interventions.
  • Item
    No Preview Available
    Copper binding to the Alzheimer's disease amyloid precursor protein
    Kong, GK-W ; Miles, LA ; Crespi, GAN ; Morton, CJ ; Ng, HL ; Barnham, KJ ; McKinstry, WJ ; Cappai, R ; Parker, MW (SPRINGER, 2008-03)
    Alzheimer's disease is the fourth biggest killer in developed countries. Amyloid precursor protein (APP) plays a central role in the development of the disease, through the generation of a peptide called A beta by proteolysis of the precursor protein. APP can function as a metalloprotein and modulate copper transport via its extracellular copper binding domain (CuBD). Copper binding to this domain has been shown to reduce A beta levels and hence a molecular understanding of the interaction between metal and protein could lead to the development of novel therapeutics to treat the disease. We have recently determined the three-dimensional structures of apo and copper bound forms of CuBD. The structures provide a mechanism by which CuBD could readily transfer copper ions to other proteins. Importantly, the lack of significant conformational changes to CuBD on copper binding suggests a model in which copper binding affects the dimerisation state of APP leading to reduction in A beta production. We thus predict that disruption of APP dimers may be a novel therapeutic approach to treat Alzheimer's disease.
  • Item
    Thumbnail Image
    Family clustering of viliuisk encephalomyelitis in traditional and new geographic regions
    Vladimirtsev, VA ; Nikitina, RS ; Renwick, N ; Ivanova, AA ; Danilova, AP ; Platonov, FA ; Krivoshapkin, VG ; McLean, CA ; Masters, CL ; Gajdusek, C ; Goldfarb, LG (CENTER DISEASE CONTROL, 2007-09)
    Viliuisk encephalomyelitis is an acute, often fatal, meningoencephalitis that tends to develop into a prolonged chronically progressive panencephalitis. Clinical, neuropathologic, and epidemiologic data argue for an infectious cause, although multiple attempts at pathogen isolation have been unsuccessful. To assess mechanisms of disease transmission and spread, we studied 6 multiplex families. Secondary cases occurred among genetically related and unrelated persons in a setting of prolonged intrahousehold contact with a patient manifesting the disease. Transmission to unrelated persons was documented in a densely populated region around the city of Yakutsk in which Viliuisk encephalomyelitis had not been previously known. Initially identified in a small Yakut-Evenk population on the Viliui River of eastern Siberia, the disease subsequently spread through human contacts to new geographic areas, thus characterizing Viliuisk encephalomyelitis as an emerging infectious disease.
  • Item
    Thumbnail Image
    An Ancient Duplication of Exon 5 in the Snap25 Gene Is Required for Complex Neuronal Development/Function
    Johansson, JU ; Ericsson, J ; Janson, J ; Beraki, S ; Stanic, D ; Mandic, SA ; Wikstrom, MA ; Hokfelt, T ; Ogren, SO ; Rozell, B ; Berggren, P-O ; Bark, C ; Frankel, WN (PUBLIC LIBRARY SCIENCE, 2008-11)
    Alternative splicing is an evolutionary innovation to create functionally diverse proteins from a limited number of genes. SNAP-25 plays a central role in neuroexocytosis by bridging synaptic vesicles to the plasma membrane during regulated exocytosis. The SNAP-25 polypeptide is encoded by a single copy gene, but in higher vertebrates a duplication of exon 5 has resulted in two mutually exclusive splice variants, SNAP-25a and SNAP-25b. To address a potential physiological difference between the two SNAP-25 proteins, we generated gene targeted SNAP-25b deficient mouse mutants by replacing the SNAP-25b specific exon with a second SNAP-25a equivalent. Elimination of SNAP-25b expression resulted in developmental defects, spontaneous seizures, and impaired short-term synaptic plasticity. In adult mutants, morphological changes in hippocampus and drastically altered neuropeptide expression were accompanied by severe impairment of spatial learning. We conclude that the ancient exon duplication in the Snap25 gene provides additional SNAP-25-function required for complex neuronal processes in higher eukaryotes.
  • Item
    Thumbnail Image
    An investigation of polymorphisms in the 17q11.2-12 CC chemokine gene cluster for association with multiple sclerosis in Australians
    Bugeja, MJ ; Booth, D ; Bennetts, B ; Heard, R ; Rubio, J ; Stewart, G (BMC, 2006-07-26)
    BACKGROUND: Multiple sclerosis (MS) is a disorder of the central nervous system (CNS) characterised by inflammation and neuronal degeneration. It is believed to result from the complex interaction of a number of genes, each with modest effect. Chemokines are vital to the migration of cells to sites of inflammation, including the CNS, and many are implicated in MS pathogenesis. Most of the CC chemokine genes are encoded in a cluster on chromosome 17q11.2-12, which has been identified in a number of genome wide screens as being potentially associated with MS. METHODS: We conducted a two-stage analysis to investigate the chemokine gene cluster for association with MS. After sequencing the chemokine genes in several DNA pools to identify common polymorphisms, 12 candidate single-nucleotide polymorphisms (SNPs) were genotyped in a cohort of Australian MS trio families. RESULTS: Marginally significant (uncorrected) transmission distortion was identified for four of the SNPs after stratification for several factors. We also identified marginally significant (uncorrected) transmission distortion for haplotypes encompassing the CCL2 and CCL11 genes, using two independent cohorts, which was consistent with recent reports from another group. CONCLUSION: Our results implicate several chemokines as possibly being associated with MS susceptibility, and given that chemokines and their receptors are suitable targets for therapeutic agents, further investigation is warranted in this region.