Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 150
  • Item
    Thumbnail Image
    Microglial ferroptotic stress causes non-cell autonomous neuronal death
    Liddell, JR ; Hilton, JBW ; Kysenius, K ; Billings, JL ; Nikseresht, S ; Mcinnes, LE ; Hare, DJ ; Paul, B ; Mercer, SW ; Belaidi, AA ; Ayton, S ; Roberts, BR ; Beckman, JS ; Mclean, CA ; White, AR ; Donnelly, PS ; Bush, AI ; Crouch, PJ (BMC, 2024-02-05)
    BACKGROUND: Ferroptosis is a form of regulated cell death characterised by lipid peroxidation as the terminal endpoint and a requirement for iron. Although it protects against cancer and infection, ferroptosis is also implicated in causing neuronal death in degenerative diseases of the central nervous system (CNS). The precise role for ferroptosis in causing neuronal death is yet to be fully resolved. METHODS: To elucidate the role of ferroptosis in neuronal death we utilised co-culture and conditioned medium transfer experiments involving microglia, astrocytes and neurones. We ratified clinical significance of our cell culture findings via assessment of human CNS tissue from cases of the fatal, paralysing neurodegenerative condition of amyotrophic lateral sclerosis (ALS). We utilised the SOD1G37R mouse model of ALS and a CNS-permeant ferroptosis inhibitor to verify pharmacological significance in vivo. RESULTS: We found that sublethal ferroptotic stress selectively affecting microglia triggers an inflammatory cascade that results in non-cell autonomous neuronal death. Central to this cascade is the conversion of astrocytes to a neurotoxic state. We show that spinal cord tissue from human cases of ALS exhibits a signature of ferroptosis that encompasses atomic, molecular and biochemical features. Further, we show the molecular correlation between ferroptosis and neurotoxic astrocytes evident in human ALS-affected spinal cord is recapitulated in the SOD1G37R mouse model where treatment with a CNS-permeant ferroptosis inhibitor, CuII(atsm), ameliorated these markers and was neuroprotective. CONCLUSIONS: By showing that microglia responding to sublethal ferroptotic stress culminates in non-cell autonomous neuronal death, our results implicate microglial ferroptotic stress as a rectifiable cause of neuronal death in neurodegenerative disease. As ferroptosis is currently primarily regarded as an intrinsic cell death phenomenon, these results introduce an entirely new pathophysiological role for ferroptosis in disease.
  • Item
    No Preview Available
    Trabid patient mutations impede the axonal trafficking of adenomatous polyposis coli to disrupt neurite growth
    Frank, D ; Bergamasco, M ; Mlodzianoski, MJ ; Kueh, A ; Tsui, E ; Hall, C ; Kastrappis, G ; Voss, AK ; McLean, C ; Faux, M ; Rogers, KL ; Tran, B ; Vincan, E ; Komander, D ; Dewson, G ; Tran, H (eLIFE SCIENCES PUBL LTD, 2023-12-15)
    ZRANB1 (human Trabid) missense mutations have been identified in children diagnosed with a range of congenital disorders including reduced brain size, but how Trabid regulates neurodevelopment is not understood. We have characterized these patient mutations in cells and mice to identify a key role for Trabid in the regulation of neurite growth. One of the patient mutations flanked the catalytic cysteine of Trabid and its deubiquitylating (DUB) activity was abrogated. The second variant retained DUB activity, but failed to bind STRIPAK, a large multiprotein assembly implicated in cytoskeleton organization and neural development. Zranb1 knock-in mice harboring either of these patient mutations exhibited reduced neuronal and glial cell densities in the brain and a motor deficit consistent with fewer dopaminergic neurons and projections. Mechanistically, both DUB-impaired and STRIPAK-binding-deficient Trabid variants impeded the trafficking of adenomatous polyposis coli (APC) to microtubule plus-ends. Consequently, the formation of neuronal growth cones and the trajectory of neurite outgrowth from mutant midbrain progenitors were severely compromised. We propose that STRIPAK recruits Trabid to deubiquitylate APC, and that in cells with mutant Trabid, APC becomes hyperubiquitylated and mislocalized causing impaired organization of the cytoskeleton that underlie the neuronal and developmental phenotypes.
  • Item
    No Preview Available
    Trabid patient mutations impede the axonal trafficking of adenomatous polyposis coli to disrupt neurite growth
    Frank, D ; Bergamasco, M ; Mlodzianoski, MJ ; Kueh, A ; Tsui, E ; Hall, C ; Kastrappis, G ; Voss, AK ; McLean, C ; Faux, M ; Rogers, KL ; Tran, B ; Vincan, E ; Komander, D ; Dewson, G ; Tran, H (eLife Sciences Publications, Ltd, )
    ZRANB1 (human Trabid) missense mutations have been identified in children diagnosed with a range of congenital disorders including reduced brain size, but how Trabid regulates neurodevelopment is not understood. We have characterized these patient mutations in cells and mice to identify a key role for Trabid in the regulation of neurite growth. One of the patient mutations flanked the catalytic cysteine of Trabid and its deubiquitylating (DUB) activity was abrogated. The second variant retained DUB activity, but failed to bind STRIPAK, a large multiprotein assembly implicated in cytoskeleton organization and neural development. Zranb1 knock-in mice harboring either of these patient mutations exhibited reduced neuronal and glial cell densities in the brain and a motor deficit consistent with fewer dopaminergic neurons and projections. Mechanistically, both DUB-impaired and STRIPAK-binding-deficient Trabid variants impeded the trafficking of adenomatous polyposis coli (APC) to microtubule plus-ends. Consequently, the formation of neuronal growth cones and the trajectory of neurite outgrowth from mutant midbrain progenitors were severely compromised. We propose that STRIPAK recruits Trabid to deubiquitylate APC, and that in cells with mutant Trabid, APC becomes hyperubiquitylated and mislocalized causing impaired organization of the cytoskeleton that underlie the neuronal and developmental phenotypes.
  • Item
    No Preview Available
    Extracellular vesicular lipids as biomarkers for the diagnosis of Alzheimer’s disease
    Su, H ; Rustam, YH ; Masters, CL ; Makalic, E ; McLean, C ; Hill, AF ; Barnham, KJ ; Reid, GE ; Vella, LJ (Wiley, 2021-12-31)
    An increasing number of studies have revealed that dysregulated lipid homeostasis is associated with the pathological processes that lead to Alzheimer’s disease (AD). If changes in key lipid species could be detected in the periphery, it would advance our understanding of the disease and facilitate biomarker discovery. Global lipidomic profiling of sera/blood however has proved challenging with limited disease or tissue specificity. Small extracellular vesicles (EV) in the central nervous system, can pass the blood-brain barrier and enter the periphery, carrying a subset of lipids that could reflect lipid homeostasis in brain. This makes EVs uniquely suited for peripheral biomarker exploration.
  • Item
    Thumbnail Image
    Modulation of the Microglial Nogo-A/NgR Signaling Pathway as a Therapeutic Target for Multiple Sclerosis
    Nheu, D ; Ellen, O ; Ye, S ; Ozturk, E ; Pagnin, M ; Kertadjaja, S ; Theotokis, P ; Grigoriadis, N ; McLean, C ; Petratos, S (MDPI, 2022-12)
    Current therapeutics targeting chronic phases of multiple sclerosis (MS) are considerably limited in reversing the neural damage resulting from repeated inflammation and demyelination insults in the multi-focal lesions. This inflammation is propagated by the activation of microglia, the endogenous immune cell aiding in the central nervous system homeostasis. Activated microglia may transition into polarized phenotypes; namely, the classically activated proinflammatory phenotype (previously categorized as M1) and the alternatively activated anti-inflammatory phenotype (previously, M2). These transitional microglial phenotypes are dynamic states, existing as a continuum. Shifting microglial polarization to an anti-inflammatory status may be a potential therapeutic strategy that can be harnessed to limit neuroinflammation and further neurodegeneration in MS. Our research has observed that the obstruction of signaling by inhibitory myelin proteins such as myelin-associated inhibitory factor, Nogo-A, with its receptor (NgR), can regulate microglial cell function and activity in pre-clinical animal studies. Our review explores the microglial role and polarization in MS pathology. Additionally, the potential therapeutics of targeting Nogo-A/NgR cellular mechanisms on microglia migration, polarization and phagocytosis for neurorepair in MS and other demyelination diseases will be discussed.
  • Item
    Thumbnail Image
    Quantitative proteomics of tau and Aβ in n detergent fractions from Alzheimer's disease brains
    Mukherjee, S ; Dubois, C ; Perez, K ; Varghese, S ; Birchall, IE ; Leckey, M ; Davydova, N ; McLean, C ; Nisbet, RM ; Roberts, BR ; Li, Q-X ; Masters, CL ; Streltsov, VA (WILEY, 2023-02)
    The two hallmarks of Alzheimer's disease (AD) are amyloid-β (Aβ) plaques and neurofibrillary tangles marked by phosphorylated tau. Increasing evidence suggests that aggregating Aβ drives tau accumulation, a process that involves synaptic degeneration leading to cognitive impairment. Conversely, there is a realization that non-fibrillar (oligomeric) forms of Aβ mediate toxicity in AD. Fibrillar (filamentous) aggregates of proteins across the spectrum of the primary and secondary tauopathies were the focus of recent structural studies with a filament structure-based nosologic classification, but less emphasis was given to non-filamentous co-aggregates of insoluble proteins in the fractions derived from post-mortem human brains. Here, we revisited sarkosyl-soluble and -insoluble extracts to characterize tau and Aβ species by quantitative targeted mass spectrometric proteomics, biochemical assays, and electron microscopy. AD brain sarkosyl-insoluble pellets were greatly enriched with Aβ42 at almost equimolar levels to N-terminal truncated microtubule-binding region (MTBR) isoforms of tau with multiple site-specific post-translational modifications (PTMs). MTBR R3 and R4 tau peptides were most abundant in the sarkosyl-insoluble materials with a 10-fold higher concentration than N-terminal tau peptides. This indicates that the major proportion of the enriched tau was the aggregation-prone N-terminal and proline-rich region (PRR) of truncated mixed 4R and 3R tau with more 4R than 3R isoforms. High concentration and occupancies of site-specific phosphorylation pT181 (~22%) and pT217 (~16%) (key biomarkers of AD) along with other PTMs in the PRR and MTBR indicated a regional susceptibility of PTMs in aggregated tau. Immunogold labelling revealed that tau may exist in globular non-filamentous form (N-terminal intact tau) co-localized with Aβ in the sarkosyl-insoluble pellets along with tau filaments (N-truncated MTBR tau). Our results suggest a model that Aβ and tau interact forming globular aggregates, from which filamentous tau and Aβ emerge. These characterizations contribute towards unravelling the sequence of events which lead to end-stage AD changes.
  • Item
    No Preview Available
    11C-PiB PET can underestimate brain amyloid-β burden when cotton wool plaques are numerous
    Abrahamson, EE ; Kofler, JK ; Becker, CR ; Price, JC ; Newell, KL ; Ghetti, B ; Murrell, JR ; McLean, CA ; Lopez, OL ; Mathis, CA ; Klunk, WE ; Villemagne, VL ; Ikonomovic, MD (OXFORD UNIV PRESS, 2022-06-30)
    Individuals with familial Alzheimer's disease due to PSEN1 mutations develop high cortical fibrillar amyloid-β load but often have lower cortical 11C-Pittsburgh compound B (PiB) retention than Individuals with sporadic Alzheimer's disease. We hypothesized this is influenced by limited interactions of Pittsburgh compound B with cotton wool plaques, an amyloid-β plaque type common in familial Alzheimer's disease but rare in sporadic Alzheimer's disease. Histological sections of frontal and temporal cortex, caudate nucleus and cerebellum were obtained from 14 cases with sporadic Alzheimer's disease, 12 cases with familial Alzheimer's disease due to PSEN1 mutations, two relatives of a PSEN1 mutation carrier but without genotype information and three non-Alzheimer's disease cases. Sections were processed immunohistochemically using amyloid-β-targeting antibodies and the fluorescent amyloid stains cyano-PiB and X-34. Plaque load was quantified by percentage area analysis. Frozen homogenates from the same brain regions from five sporadic Alzheimer's disease and three familial Alzheimer's disease cases were analysed for 3H-PiB in vitro binding and concentrations of amyloid-β1-40 and amyloid-β1-42. Nine sporadic Alzheimer's disease, three familial Alzheimer's disease and three non-Alzheimer's disease participants had 11C-PiB PET with standardized uptake value ratios calculated using the cerebellum as the reference region. Cotton wool plaques were present in the neocortex of all familial Alzheimer's disease cases and one sporadic Alzheimer's disease case, in the caudate nucleus from four familial Alzheimer's disease cases, but not in the cerebellum. Cotton wool plaques immunolabelled robustly with 4G8 and amyloid-β42 antibodies but weakly with amyloid-β40 and amyloid-βN3pE antibodies and had only background cyano-PiB fluorescence despite labelling with X-34. Relative to amyloid-β plaque load, cyano-Pittsburgh compound B plaque load was similar in sporadic Alzheimer's disease while in familial Alzheimer's disease it was lower in the neocortex and the caudate nucleus. In both regions, insoluble amyloid-β1-42 and amyloid-β1-40 concentrations were similar in familial Alzheimer's disease and sporadic Alzheimer's disease groups, while 3H-PiB binding was lower in the familial Alzheimer's disease than the sporadic Alzheimer's disease group. Higher amyloid-β1-42 concentration associated with higher 3H-PiB binding in sporadic Alzheimer's disease but not familial Alzheimer's disease. 11C-PiB retention correlated with region-matched post-mortem amyloid-β plaque load; however, familial Alzheimer's disease cases with abundant cotton wool plaques had lower 11C-PiB retention than sporadic Alzheimer's disease cases with similar amyloid-β plaque loads. PiB has limited ability to detect amyloid-β aggregates in cotton wool plaques and may underestimate total amyloid-β plaque burden in brain regions with abundant cotton wool plaques.
  • Item
    Thumbnail Image
    Pre-targeting amyloid-β with antibodies for potential molecular imaging of Alzheimer's disease
    Morgan, KA ; de Veer, M ; Miles, LA ; Kelderman, CAA ; McLean, CA ; Masters, CL ; Barnham, KJ ; White, JM ; Paterson, BM ; Donnelly, PS (ROYAL SOC CHEMISTRY, 2023-02-21)
    With the aim of developing the concept of pretargeted click chemistry for the diagnosis of Alzheimer's disease two antibodies specific for amyloid-β were modified to incorporate trans-cyclooctene functional groups. Two bis(thiosemicarbazone) compounds with pendant 1,2,4,5-tetrazine functional groups were prepared and radiolabelled with positron emitting copper-64. The new copper-64 complexes rapidly react with the trans-cyclooctene functionalized antibodies in a bioorthogonal click reaction and cross the blood-brain barrier in mice.
  • Item
    Thumbnail Image
    Common Variants Near ZIC1 and ZIC4 in Autopsy-Confirmed Multiple System Atrophy.
    Hopfner, F ; Tietz, AK ; Ruf, VC ; Ross, OA ; Koga, S ; Dickson, D ; Aguzzi, A ; Attems, J ; Beach, T ; Beller, A ; Cheshire, WP ; van Deerlin, V ; Desplats, P ; Deuschl, G ; Duyckaerts, C ; Ellinghaus, D ; Evsyukov, V ; Flanagan, ME ; Franke, A ; Frosch, MP ; Gearing, M ; Gelpi, E ; van Gerpen, JA ; Ghetti, B ; Glass, JD ; Grinberg, LT ; Halliday, G ; Helbig, I ; Höllerhage, M ; Huitinga, I ; Irwin, DJ ; Keene, DC ; Kovacs, GG ; Lee, EB ; Levin, J ; Martí, MJ ; Mackenzie, I ; McKeith, I ; Mclean, C ; Mollenhauer, B ; Neumann, M ; Newell, KL ; Pantelyat, A ; Pendziwiat, M ; Peters, A ; Molina Porcel, L ; Rabano, A ; Matěj, R ; Rajput, A ; Rajput, A ; Reimann, R ; Scott, WK ; Seeley, W ; Selvackadunco, S ; Simuni, T ; Stadelmann, C ; Svenningsson, P ; Thomas, A ; Trenkwalder, C ; Troakes, C ; Trojanowski, JQ ; Uitti, RJ ; White, CL ; Wszolek, ZK ; Xie, T ; Ximelis, T ; Yebenes, J ; Alzheimer's Disease Genetics Consortium, ; Müller, U ; Schellenberg, GD ; Herms, J ; Kuhlenbäumer, G ; Höglinger, G (Wiley, 2022-10)
  • Item
    Thumbnail Image
    GM-CSF antibodies in artificial stone associated silicoproteinosis: A case report and literature review
    Khan, SNS ; Stirling, RG ; Mclean, CA ; Russell, PA ; Hoy, RF (WILEY, 2022-09)
    Pulmonary alveolar proteinosis (PAP) is a rare lung disease where there is accumulation of surfactant in the alveoli. It can be classified based on the underlying aetiology into three categories: primary, secondary and congenital. Autoantibodies to granulocyte-macrophage colony-stimulating factor (GM-CSF-Ab) are a key diagnostic feature of autoimmune PAP. High intensity occupational exposure and inhalation of toxic particles such as silica can cause a form of secondary PAP called acute silicoproteinosis. We describe a 26-year-old stone benchtop fabricator with silicoproteinosis following daily exposure to high levels of silica who had elevated serum GM-CSF-Ab. We discuss the role of GM-CSF-Ab in cases of PAP with occupational inhalational exposure and the challenges in its interpretation.