- Florey Department of Neuroscience and Mental Health - Research Publications
Florey Department of Neuroscience and Mental Health - Research Publications
Permanent URI for this collection
Search Results
Now showing
1 - 3 of 3
-
ItemProgressive impairments in executive function in the APP/PS1 model of Alzheimer’s disease as measured by translatable touchscreen testingShepherd, A ; Lim, JKH ; Wong, VHY ; Zeleznikow-Johnston, AM ; Churilov, L ; Nguyen, CTO ; Bui, BV ; Hannan, AJ ; Burrows, EL ( 2019-08-21)Executive function deficits in Alzheimer’s disease (AD) occur early in disease progression and may be predictive of cognitive decline. However, no preclinical studies have identified deficits in rewarded executive function in the commonly used APP/PS1 mouse model. To address this, we assessed 12-26 month old APP/PS1 mice on rewarded reversal and/or extinction tasks. 16-month-old, but not 13- or 26-month-old, APP/PS1 mice showed an attenuated rate of extinction. Reversal deficits were seen in 22-month-old, but not 13-month-old APP/PS1 animals. We then confirmed that impairments in reversal were unrelated to previously reported visual impairments in both AD mouse models and humans. Age, but not genotype, had a significant effect on markers of retinal health, indicating the deficits seen in APP/PS1 mice were directly related to cognition. This is the first characterisation of rewarded executive function in APP/PS1 mice, and has great potential to facilitate translation from preclinical models to the clinic.
-
ItemEvaluation of attention in APP/PS1 mice shows impulsive and compulsive behavioursShepherd, A ; May, C ; Churilov, L ; Adlard, PA ; Hannan, AJ ; Burrows, EL (WILEY, 2019-07-08)While Alzheimer's disease (AD) is traditionally associated with deficits in episodic memory, early changes in other cognitive domains, such as attention, have been gaining interest. In line with clinical observations, some animal models of AD have been shown to develop attentional deficits, but this is not consistent across all models. The APPswe/PS1ΔE9 (APP/PS1) mouse is one of the most commonly used AD models and attention has not yet been scrutinised in this model. We set out to assess attention using the 5-choice serial reaction time task (5CSRTT) early in the progression of cognitive symptoms in APP/PS1 mice, using clinically translatable touchscreen chambers. APP/PS1 mice showed no attentional changes across 5CSRTT training or any probes from 9 to 11 months of age. Interestingly, APP/PS1 mice showed increased impulsive and compulsive responding when task difficulty was high. This suggests that while the APP/PS1 mouse model may not be a good model of attentional changes in AD, it may be useful to study the early changes in impulsive and compulsive behaviour that have been identified in patient studies. As these changes have not previously been reported without attentional deficits in the clinic, the APP/PS1 mouse model may provide a unique opportunity to study these specific behavioural changes seen in AD, including their mechanistic underpinnings and therapeutic implications.
-
ItemChronic voluntary alcohol consumption causes persistent cognitive deficits and cortical cell loss in a rodent modelCharlton, AJ ; May, C ; Luikinga, SJ ; Burrows, EL ; Kim, JH ; Lawrence, AJ ; Perry, CJ (NATURE PUBLISHING GROUP, 2019-12-09)Chronic alcohol use is associated with cognitive decline that impedes behavioral change during rehabilitation. Despite this, addiction therapy does not address cognitive deficits, and there is poor understanding regarding the mechanisms that underlie this decline. We established a rodent model of chronic voluntary alcohol use to measure ensuing cognitive effects and underlying pathology. Rats had intermittent access to alcohol or an isocaloric solution in their home cage under voluntary 2-bottle choice conditions. In Experiments 1 and 2 cognition was assessed using operant touchscreen chambers. We examined performance in a visual discrimination and reversal task (Experiment 1), and a 5-choice serial reaction time task (Experiment 2). For Experiment 3, rats were perfused immediately after cessation of alcohol access period, and volume, cell density and microglial populations were assessed in the prefrontal cortex and striatum. Volume was assessed using the Cavalieri probe, while cell and microglial counts were estimated using unbiased stereology with an optical fractionator. Alcohol-exposed and control rats showed comparable acquisition of pairwise discrimination; however, performance was impaired when contingencies were reversed indicating reduced behavioral flexibility. When tested in a 5-choice serial reaction time task alcohol-exposed rats showed increased compulsivity and increased attentional bias towards a reward associated cue. Consistent with these changes, we observed decreased cell density in the prefrontal cortex. These findings confirm a detrimental effect of chronic alcohol and establish a model of alcohol-induced cognitive decline following long-term voluntary intake that may be used for future intervention studies.