Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    Thumbnail Image
    Progressive impairments in executive function in the APP/PS1 model of Alzheimer’s disease as measured by translatable touchscreen testing
    Shepherd, A ; Lim, JKH ; Wong, VHY ; Zeleznikow-Johnston, AM ; Churilov, L ; Nguyen, CTO ; Bui, BV ; Hannan, AJ ; Burrows, EL ( 2019-08-21)
    Executive function deficits in Alzheimer’s disease (AD) occur early in disease progression and may be predictive of cognitive decline. However, no preclinical studies have identified deficits in rewarded executive function in the commonly used APP/PS1 mouse model. To address this, we assessed 12-26 month old APP/PS1 mice on rewarded reversal and/or extinction tasks. 16-month-old, but not 13- or 26-month-old, APP/PS1 mice showed an attenuated rate of extinction. Reversal deficits were seen in 22-month-old, but not 13-month-old APP/PS1 animals. We then confirmed that impairments in reversal were unrelated to previously reported visual impairments in both AD mouse models and humans. Age, but not genotype, had a significant effect on markers of retinal health, indicating the deficits seen in APP/PS1 mice were directly related to cognition. This is the first characterisation of rewarded executive function in APP/PS1 mice, and has great potential to facilitate translation from preclinical models to the clinic.
  • Item
    Thumbnail Image
    Paradoxical effects of exercise on hippocampal plasticity and cognition in mice with a heterozygous null mutation in the serotonin transporter gene
    Rogers, J ; Chen, F ; Stanic, D ; Farzana, F ; Li, S ; Zeleznikow-Johnston, AM ; Nithianantharajah, J ; Churilov, IL ; Adlard, PA ; Lanfumey, L ; Hannan, AJ ; Renoir, T (WILEY, 2019-09)
    BACKGROUND AND PURPOSE: Exercise is known to improve cognitive function, but the exact synaptic and cellular mechanisms remain unclear. We investigated the potential role of the serotonin (5-HT) transporter (SERT) in mediating these effects. EXPERIMENTAL APPROACH: Hippocampal long-term potentiation (LTP) and neurogenesis were measured in standard-housed and exercising (wheel running) wild-type (WT) and SERT heterozygous (HET) mice. We also assessed hippocampal-dependent cognition using the Morris water maze (MWM) and a spatial pattern separation touchscreen task. KEY RESULTS: SERT HET mice had impaired hippocampal LTP regardless of the housing conditions. Exercise increased hippocampal neurogenesis in WT mice. However, this was not observed in SERT HET animals, even though both genotypes used the running wheels to a similar extent. We also found that standard-housed SERT HET mice displayed altered cognitive flexibility than WT littermate controls in the MWM reversal learning task. However, SERT HET mice no longer exhibited this phenotype after exercise. Cognitive changes, specific to SERT HET mice in the exercise condition, were also revealed on the touchscreen spatial pattern separation task, especially when the cognitive pattern separation load was at its highest. CONCLUSIONS AND IMPLICATIONS: Our study is the first evidence of reduced hippocampal LTP in SERT HET mice. We also show that functional SERT is required for exercise-induced increase in adult neurogenesis. Paradoxically, exercise had a negative impact on hippocampal-dependent cognitive tasks, especially in SERT HET mice. Taken together, our results suggest unique complex interactions between exercise and altered 5-HT homeostasis.
  • Item
    Thumbnail Image
    Mutations in neuroligin-3 in male mice impact behavioral flexibility but not relational memory in a touchscreen test of visual transitive inference
    Norris, RHC ; Churilov, L ; Hannan, AJ ; Nithianantharajah, J (BioMed Central, 2019)
    Cognitive dysfunction including disrupted behavioral flexibility is central to neurodevelopmental disorders such as Autism Spectrum Disorder (ASD). A cognitive measure that assesses relational memory, and the ability to flexibly assimilate and transfer learned information is transitive inference. Transitive inference is highly conserved across vertebrates and disrupted in cognitive disorders. Here, we examined how mutations in the synaptic cell-adhesion molecule neuroligin-3 (Nlgn3) that have been documented in ASD impact relational memory and behavioral flexibility. We first refined a rodent touchscreen assay to measure visual transitive inference, then assessed two mouse models of Nlgn3 dysfunction (Nlgn3−/y and Nlgn3R451C). Deep analysis of touchscreen behavioral data at a trial level established we could measure trajectories in flexible responding and changes in processing speed as cognitive load increased. We show that gene mutations in Nlgn3 do not disrupt relational memory, but significantly impact flexible responding. Our study presents the first analysis of reaction times in a rodent transitive inference test, highlighting response latencies from the touchscreen system are useful indicators of processing demands or decision-making processes. These findings expand our understanding of how dysfunction of key components of synaptic signaling complexes impact distinct cognitive processes disrupted in neurodevelopmental disorders, and advance our approaches for dissecting rodent behavioral assays to provide greater insights into clinically relevant cognitive symptoms.
  • Item
    Thumbnail Image
    Touchscreen testing reveals clinically relevant cognitive abnormalities in a mouse model of schizophrenia lacking metabotropic glutamate receptor 5
    Zeleznikow-Johnston, AM ; Renoir, T ; Churilov, L ; Li, S ; Burrows, EL ; Hannan, AJ (NATURE PORTFOLIO, 2018-11-06)
    Metabotropic glutamate receptor 5 (mGlu5) has been implicated in certain forms of synaptic plasticity and cognitive function. mGlu5 knockout (KO) mice and mGlu5 antagonists have been previously used to study the pathophysiology of schizophrenia as they have been shown respectively to display or induce endophenotypes relevant to schizophrenia. While schizophrenia presents with generalized cognitive impairments, the cognitive phenotype of mice lacking mGlu5 has so far only been explored using largely hippocampal-dependent spatial and contextual memory tasks. To address this, we used a touchscreen system to assess mGlu5 KO mice for pairwise visual discrimination, reversal learning, and extinction of an instrumental response requiring no discrimination. Furthermore, we tested the role of mGlu5 in working memory using the Trial-Unique Non-Matching to Location (TUNL) task utilizing pharmacological ablation. mGlu5 KO mice were impaired on discrimination learning, taking longer to reach criterion and requiring more correction learning trials. Performance on reversal learning was also impaired, with mGlu5 KO mice demonstrating a perseverative phenotype. The mGlu5 KO mice responded at a higher rate during extinction, consistent with this perseverative profile. In contrast, wildtype mice treated acutely with an mGlu5 antagonist (MTEP) showed no deficits in a touchscreen task assessing working memory. The present study demonstrates learning and memory deficits as well as an increased perseverative phenotype following constitutive loss of mGlu5 in this mouse model of schizophrenia. These findings will inform translational approaches using this preclinical model and the pursuit of mGlu5 as therapeutic target for schizophrenia and other brain disorders.
  • Item
    Thumbnail Image
    Social Isolation Alters Social and Mating Behavior in the R451C Neuroligin Mouse Model of Autism
    Burrows, EL ; Eastwood, AF ; May, C ; Kolbe, SC ; Hill, T ; McLachlan, NM ; Churilov, L ; Hannan, AJ (HINDAWI LTD, 2017)
    Autism spectrum disorder (ASD) is a neurodevelopmental disorder typified by impaired social communication and restrictive and repetitive behaviors. Mice serve as an ideal candidate organism for studying the neural mechanisms that subserve these symptoms. The Neuroligin-3 (NL3) mouse, expressing a R451C mutation discovered in two Swedish brothers with ASD, exhibits impaired social interactions and heightened aggressive behavior towards male mice. Social interactions with female mice have not been characterized and in the present study were assessed in male NL3R451C and WT mice. Mice were housed in social and isolation conditions to test for isolation-induced increases in social interaction. Tests were repeated to investigate potential differences in interaction in naïve and experienced mice. We identified heightened interest in mating and atypical aggressive behavior in NL3R451C mice. NL3R451C mice exhibited normal social interaction with WT females, indicating that abnormal aggressive behavior towards females is not due to altered motivation to engage. Social isolation rearing heightened interest in social behavior in all mice. Isolation housing selectively modulated the response to female pheromones in NL3R451C mice. This study is the first to show altered mating behavior in the NL3R451C mouse and has provided new insights into the aggressive phenotype in this model.
  • Item
    Thumbnail Image
    Dissociating the therapeutic effects of environmental enrichment and exercise in a mouse model of anxiety with cognitive impairment
    Rogers, J ; Vo, U ; Buret, LS ; Pang, TY ; Meiklejohn, H ; Zeleznikow-Johnston, A ; Churilov, L ; van den Buuse, M ; Hannan, AJ ; Renoir, T (NATURE PUBLISHING GROUP, 2016-04-26)
    Clinical evidence indicates that serotonin-1A receptor (5-HT1AR) gene polymorphisms are associated with anxiety disorders and deficits in cognition. In animal models, exercise (Ex) and environmental enrichment (EE) can change emotionality-related behaviours, as well as enhance some aspects of cognition and hippocampal neurogenesis. We investigated the effects of Ex and EE (which does not include running wheels) on cognition and anxiety-like behaviours in wild-type (WT) and 5-HT1AR knock-out (KO) mice. Using an algorithm-based classification of search strategies in the Morris water maze, we report for we believe the first time that Ex increased the odds for mice to select more hippocampal-dependent strategies. In the retention probe test, Ex (but not EE) corrected long-term spatial memory deficits displayed by KO mice. In agreement with these findings, only Ex increased hippocampal cell survival and BDNF protein levels. However, only EE (but not Ex) modified anxiety-like behaviours, demonstrating dissociation between improvements in cognition and innate anxiety. EE enhanced hippocampal cell proliferation in WT mice only, suggesting a crucial role for intact serotonergic signalling in mediating this effect. Together, these results demonstrate differential effects of Ex vs EE in a mouse model of anxiety with cognitive impairment. Overall, the 5-HT1AR does not seem to be critical for those behavioural effects to occur. These findings will have implications for our understanding of how Ex and EE enhance experience-dependent plasticity, as well as their differential impacts on anxiety and cognition.
  • Item
    Thumbnail Image
    A neuroligin-3 mutation implicated in autism causes abnormal aggression and increases repetitive behavior in mice
    Burrows, EL ; Laskaris, L ; Koyama, L ; Churilov, L ; Bornstein, JC ; Hill-Yardin, EL ; Hannan, AJ (BMC, 2015-11-14)
    BACKGROUND: Aggression is common in patients with autism spectrum disorders (ASD) along with the core symptoms of impairments in social communication and repetitive behavior. Risperidone, an atypical antipsychotic, is widely used to treat aggression in ASD. In order to understand the neurobiological underpinnings of these challenging behaviors, a thorough characterisation of behavioral endophenotypes in animal models is required. METHODS: We investigated aggression in mice containing the ASD-associated R451C (arginine to cysteine residue 451 substitution) mutation in neuroligin-3 (NL3). Furthermore, we sought to verify social interaction impairments and assess olfaction, anxiety, and repetitive and restrictive behavior in NL3(R451C) mutant mice. RESULTS: We show a pronounced elevation in aggressive behavior in NL3(R451C) mutant mice. Treatment with risperidone reduced this aggression to wild-type (WT) levels. Juvenile and adult social interactions were also investigated, and subtle differences in initiation of interaction were seen in juvenile NL3(R451C) mice. No genotype differences in olfactory discrimination or anxiety were observed indicating that aggression was not dependent on altered olfaction, stress response, or social preference. We also describe repetitive behavior in NL3(R451C) mice as assessed by a clinically relevant object exploration task. CONCLUSIONS: The presence of aberrant aggression and other behavioral phenotypes in NL3(R451C) mice consistent with clinical traits strengthen face validity of this model of ASD. Furthermore, we demonstrate predictive validity in this model through the reversal of the aggressive phenotype with risperidone. This is the first demonstration that risperidone can ameliorate aggression in an animal model of ASD and will inform mechanistic and therapeutic research into the neurobiology underlying abnormal behaviors in ASD.