Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 1259
  • Item
    No Preview Available
    Tackling Dementia Together via The Australian Dementia Network (ADNeT): A Summary of Initiatives, Progress and Plans.
    Naismith, SL ; Michaelian, JC ; Santos, C ; Mehrani, I ; Robertson, J ; Wallis, K ; Lin, X ; Ward, SA ; Martins, R ; Masters, CL ; Breakspear, M ; Ahern, S ; Fripp, J ; Schofield, PR ; Sachdev, PS ; Rowe, CC (IOS Press, 2023)
    In 2018, the Australian Dementia Network (ADNeT) was established to bring together Australia's leading dementia researchers, people with living experience and clinicians to transform research and clinical care in the field. To address dementia diagnosis, treatment, and care, ADNeT has established three core initiatives: the Clinical Quality Registry (CQR), Memory Clinics, and Screening for Trials. Collectively, the initiatives have developed an integrated clinical and research community, driving practice excellence in this field, leading to novel innovations in diagnostics, clinical care, professional development, quality and harmonization of healthcare, clinical trials, and translation of research into practice. Australia now has a national Registry for Mild Cognitive Impairment and dementia with 55 participating clinical sites, an extensive map of memory clinic services, national Memory and Cognition Clinic Guidelines and specialized screening for trials sites in five states. This paper provides an overview of ADNeT's achievements to date and future directions. With the increase in dementia cases expected over coming decades, and with recent advances in plasma biomarkers and amyloid lowering therapies, the nationally coordinated initiatives and partnerships ADNeT has established are critical for increased national prevention efforts, co-ordinated implementation of emerging treatments for Alzheimer's disease, innovation of early and accurate diagnosis, driving continuous improvements in clinical care and patient outcome and access to post-diagnostic support and clinical trials. For a heterogenous disorder such as dementia, which is now the second leading cause of death in Australia following cardiovascular disease, the case for adequate investment into research and development has grown even more compelling.
  • Item
    No Preview Available
    Trabid patient mutations impede the axonal trafficking of adenomatous polyposis coli to disrupt neurite growth
    Frank, D ; Bergamasco, M ; Mlodzianoski, MJ ; Kueh, A ; Tsui, E ; Hall, C ; Kastrappis, G ; Voss, AK ; McLean, C ; Faux, M ; Rogers, KL ; Tran, B ; Vincan, E ; Komander, D ; Dewson, G ; Tran, H (eLIFE SCIENCES PUBL LTD, 2023-12-15)
    ZRANB1 (human Trabid) missense mutations have been identified in children diagnosed with a range of congenital disorders including reduced brain size, but how Trabid regulates neurodevelopment is not understood. We have characterized these patient mutations in cells and mice to identify a key role for Trabid in the regulation of neurite growth. One of the patient mutations flanked the catalytic cysteine of Trabid and its deubiquitylating (DUB) activity was abrogated. The second variant retained DUB activity, but failed to bind STRIPAK, a large multiprotein assembly implicated in cytoskeleton organization and neural development. Zranb1 knock-in mice harboring either of these patient mutations exhibited reduced neuronal and glial cell densities in the brain and a motor deficit consistent with fewer dopaminergic neurons and projections. Mechanistically, both DUB-impaired and STRIPAK-binding-deficient Trabid variants impeded the trafficking of adenomatous polyposis coli (APC) to microtubule plus-ends. Consequently, the formation of neuronal growth cones and the trajectory of neurite outgrowth from mutant midbrain progenitors were severely compromised. We propose that STRIPAK recruits Trabid to deubiquitylate APC, and that in cells with mutant Trabid, APC becomes hyperubiquitylated and mislocalized causing impaired organization of the cytoskeleton that underlie the neuronal and developmental phenotypes.
  • Item
    No Preview Available
    Evidence for decreased copper associated with demyelination in the corpus callosum of cuprizone-treated mice
    Hilton, JBW ; Kysenius, K ; Liddell, JR ; Mercer, SW ; Hare, DJ ; Buncic, G ; Paul, B ; Wang, Y ; Murray, SS ; Kilpatrick, TJ ; White, AR ; Donnelly, PS ; Crouch, PJ (OXFORD UNIV PRESS, 2024-01-05)
    Demyelination within the central nervous system (CNS) is a significant feature of debilitating neurological diseases such as multiple sclerosis and administering the copper-selective chelatorcuprizone to mice is widely used to model demyelination in vivo. Conspicuous demyelination within the corpus callosum is generally attributed to cuprizone's ability to restrict copper availability in this vulnerable brain region. However, the small number of studies that have assessed copper in brain tissue from cuprizone-treated mice have produced seemingly conflicting outcomes, leaving the role of CNS copper availability in demyelination unresolved. Herein we describe our assessment of copper concentrations in brain samples from mice treated with cuprizone for 40 d. Importantly, we applied an inductively coupled plasma mass spectrometry methodology that enabled assessment of copper partitioned into soluble and insoluble fractions within distinct brain regions, including the corpus callosum. Our results show that cuprizone-induced demyelination in the corpus callosum was associated with decreased soluble copper in this brain region. Insoluble copper in the corpus callosum was unaffected, as were pools of soluble and insoluble copper in other brain regions. Treatment with the blood-brain barrier permeant copper compound CuII(atsm) increased brain copper levels and this was most pronounced in the soluble fraction of the corpus callosum. This effect was associated with significant mitigation of cuprizone-induced demyelination. These results provide support for the involvement of decreased CNS copper availability in demyelination in the cuprizone model. Relevance to human demyelinating disease is discussed.
  • Item
    No Preview Available
  • Item
    No Preview Available
    Genetic and Environmental Causes of Variation in an Automated Breast Cancer Risk Factor Based on Mammographic Textures
    Ye, Z ; Dite, GS ; Nguyen, TL ; Macinnis, RJ ; Schmidt, DF ; Makalic, E ; Al-Qershi, OM ; Nguyen-Dumont, T ; Goudey, B ; Stone, J ; Dowty, JG ; Giles, GG ; Southey, MC ; Hopper, JL ; Li, S (AMER ASSOC CANCER RESEARCH, 2024-02-06)
    BACKGROUND: Cirrus is an automated risk predictor for breast cancer that comprises texture-based mammographic features and is mostly independent of mammographic density. We investigated genetic and environmental variance of variation in Cirrus. METHODS: We measured Cirrus for 3,195 breast cancer-free participants, including 527 pairs of monozygotic (MZ) twins, 271 pairs of dizygotic (DZ) twins, and 1,599 siblings of twins. Multivariate normal models were used to estimate the variance and familial correlations of age-adjusted Cirrus as a function of age. The classic twin model was expanded to allow the shared environment effects to differ by zygosity. The SNP-based heritability was estimated for a subset of 2,356 participants. RESULTS: There was no evidence that the variance or familial correlations depended on age. The familial correlations were 0.52 (SE, 0.03) for MZ pairs and 0.16(SE, 0.03) for DZ and non-twin sister pairs combined. Shared environmental factors specific to MZ pairs accounted for 20% of the variance. Additive genetic factors accounted for 32% (SE = 5%) of the variance, consistent with the SNP-based heritability of 36% (SE = 16%). CONCLUSION: Cirrus is substantially familial due to genetic factors and an influence of shared environmental factors that was evident for MZ twin pairs only. The latter could be due to nongenetic factors operating in utero or in early life that are shared by MZ twins. IMPACT: Early-life factors, shared more by MZ pairs than DZ/non-twin sister pairs, could play a role in the variation in Cirrus, consistent with early life being recognized as a critical window of vulnerability to breast carcinogens.
  • Item
    No Preview Available
    Stuttering associated with a pathogenic variant in the chaperone protein cyclophilin 40
    Morgan, AT ; Scerri, TS ; Vogel, AP ; Reid, CA ; Quach, M ; Jackson, VE ; McKenzie, C ; Burrows, EL ; Bennett, MF ; Turner, SJ ; Reilly, S ; Horton, SE ; Block, S ; Kefalianos, E ; Frigerio-Domingues, C ; Sainz, E ; Rigbye, KA ; Featherby, TJ ; Richards, KL ; Kueh, A ; Herold, MJ ; Corbett, MA ; Gecz, J ; Helbig, I ; Thompson-Lake, DGY ; Liegeois, FJ ; Morell, RJ ; Hung, A ; Drayna, D ; Scheffer, IE ; Wright, DK ; Bahlo, M ; Hildebrand, MS (OXFORD UNIV PRESS, 2023-12-01)
    Stuttering is a common speech disorder that interrupts speech fluency and tends to cluster in families. Typically, stuttering is characterized by speech sounds, words or syllables which may be repeated or prolonged and speech that may be further interrupted by hesitations or 'blocks'. Rare variants in a small number of genes encoding lysosomal pathway proteins have been linked to stuttering. We studied a large four-generation family in which persistent stuttering was inherited in an autosomal dominant manner with disruption of the cortico-basal-ganglia-thalamo-cortical network found on imaging. Exome sequencing of three affected family members revealed the PPID c.808C>T (p.Pro270Ser) variant that segregated with stuttering in the family. We generated a Ppid p.Pro270Ser knock-in mouse model and performed ex vivo imaging to assess for brain changes. Diffusion-weighted MRI in the mouse revealed significant microstructural changes in the left corticospinal tract, as previously implicated in stuttering. Quantitative susceptibility mapping also detected changes in cortico-striatal-thalamo-cortical loop tissue composition, consistent with findings in affected family members. This is the first report to implicate a chaperone protein in the pathogenesis of stuttering. The humanized Ppid murine model recapitulates network findings observed in affected family members.
  • Item
    No Preview Available
    Association of maternal air pollution exposure and infant lung function is modified by genetic propensity to oxidative stress.
    Vilcins, D ; Lee, WR ; Pham, C ; Tanner, S ; Knibbs, LD ; Burgner, D ; Blake, TL ; Mansell, T ; Ponsonby, A-L ; Sly, PD ; Barwon Infant Study Investigator group, (Cold Spring Harbor Laboratory, 2023-10-13)
    INTRODUCTION: The association between air pollution and poor respiratory health outcomes is well established, however less is known about the biological mechanisms, especially in early life. Children are particularly at risk from air pollution, especially during the prenatal period as their organs and systems are still undergoing crucial development. Therefore, our study aims to investigate if maternal exposure to air pollution during pregnancy is associated with oxidative stress (OS) and inflammation in pregnancy or infant lung function at 4 weeks of age, and the extent to which the association is modified by an infant's genetic risk of OS. METHODS: The Barwon Infant Study (BIS) is a longitudinal study of Australian children from the region of Geelong, Victoria. A total of 314 infants had available lung function and maternal OS markers. Exposure to annual air pollutants (NO 2 and PM 2.5 ) were estimated using validated, satellite-based, land-use regression models. Infant lung function was measured by multiple-breath washout, and the ratio of peak tidal expiratory flow over expiratory time was calculated at 4 weeks of age. An inflammation biomarker, glycoprotein acetyls (GlycA), was measured in maternal (36 weeks) and cord blood, and oxidative stress (OS) biomarkers, 8-hydroxyguanine (8-OHGua) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were measured in maternal urine at 28 weeks. A genetic pathway score for OS (gPFS ox ) was calculated for each infant participant in the BIS cohort, and high risk defined as score >8. Linear regression was used to explore the association of maternal air pollution exposure with infant lung function, and potential modification by OS genotype was tested through use of interaction terms and other methods. RESULTS: There was no evidence of a relationship between maternal exposure to air pollution and infant lung function in the whole population. We did not find an association between air pollution and GlycA or OS during pregnancy. We found evidence of an association between NO 2 and lower in functional residual capacity (FRC) for children with a high genetic risk of OS (β=-5.3 mls, 95% CI (-9.3, -1.3), p=0.01). We also found that when NO 2 was considered in tertiles, the highest tertile of NO 2 was associated with increase in lung clearance index (LCI) (β=0.46 turnovers, (95% CI 0.10, 0.82), p=0.01) in children with a genetic propensity to OS. CONCLUSION: Our study found that high prenatal levels of exposure to ambient NO 2 levels is associated with lower FRC and higher LCI in infants with a genetic propensity to oxidative stress. There was no relationship between maternal exposure to air pollution with maternal and cord blood inflammation or OS biomarkers.
  • Item
    No Preview Available
    Identification of a Novel Subtype-Selective α1B-Adrenoceptor Antagonist
    Abdul-Ridha, A ; de Zhang, LA ; Betrie, AH ; Deluigi, M ; Vaid, TM ; Whitehead, A ; Zhang, Y ; Davis, B ; Harris, R ; Simmonite, H ; Hubbard, RE ; Gooley, PR ; Plu''ckthun, A ; Bathgate, RAD ; Chalmers, DK ; Scott, DJ (AMER CHEMICAL SOC, 2024-01-18)
    α1A-, α1B-, and α1D-adrenoceptors (α1-ARs) are members of the adrenoceptor G protein-coupled receptor family that are activated by adrenaline (epinephrine) and noradrenaline. α1-ARs are clinically targeted using antagonists that have minimal subtype selectivity, such as prazosin and tamsulosin, to treat hypertension and benign prostatic hyperplasia, respectively. Abundant expression of α1-ARs in the heart and central nervous system (CNS) makes these receptors potential targets for the treatment of cardiovascular and CNS disorders, such as heart failure, epilepsy, and Alzheimer's disease. Our understanding of the precise physiological roles of α1-ARs, however, and their involvement in disease has been hindered by the lack of sufficiently subtype-selective tool compounds, especially for α1B-AR. Here, we report the discovery of 4-[(2-hydroxyethyl)amino]-6-methyl-2H-chromen-2-one (Cpd1), as an α1B-AR antagonist that has 10-15-fold selectivity over α1A-AR and α1D-AR. Through computational and site-directed mutagenesis studies, we have identified the binding site of Cpd1 in α1B-AR and propose the molecular basis of α1B-AR selectivity, where the nonconserved V19745.52 residue plays a major role, with contributions from L3146.55 within the α1B-AR pocket. By exploring the structure-activity relationships of Cpd1 at α1B-AR, we have also identified 3-[(cyclohexylamino)methyl]-6-methylquinolin-2(1H)-one (Cpd24), which has a stronger binding affinity than Cpd1, albeit with reduced selectivity for α1B-AR. Cpd1 and Cpd24 represent potential leads for α1B-AR-selective drug discovery and novel tool molecules to further study the physiology of α1-ARs.
  • Item
    No Preview Available
    The pre-Bötzinger complex is necessary for the expression of inspiratory and post-inspiratory motor discharge of the vagus.
    Dhingra, RR ; Furuya, WI ; Yoong, YK ; Dutschmann, M (Elsevier BV, 2024-02)
    The mammalian three-phase respiratory motor pattern of inspiration, post-inspiration and expiration is expressed in spinal and cranial motor nerve discharge and is generated by a distributed ponto-medullary respiratory pattern generating network. Respiratory motor pattern generation depends on a rhythmogenic kernel located within the pre-Bötzinger complex (pre-BötC). In the present study, we tested the effect of unilateral and bilateral inactivation of the pre-BötC after local microinjection of the GABAA receptor agonist isoguvacine (10 mM, 50 nl) on phrenic (PNA), hypoglossal (HNA) and vagal nerve (VNA) respiratory motor activities in an in situ perfused brainstem preparation of rats. Bilateral inactivation of the pre-BötC triggered cessation of phrenic (PNA), hypoglossal (HNA) and vagal (VNA) nerve activities for 15-20 min. Ipsilateral isoguvacine injections into the pre-BötC triggered transient (6-8 min) cessation of inspiratory and post-inspiratory VNA (p < 0.001) and suppressed inspiratory HNA by - 70 ± 15% (p < 0.01), while inspiratory PNA burst frequency increased by 46 ± 30% (p < 0.01). Taken together, these observations confirm the role of the pre-BötC as the rhythmogenic kernel of the mammalian respiratory network in situ and highlight a significant role for the pre-BötC in the transmission of vagal inspiratory and post-inspiratory pre-motor drive to the nucleus ambiguus.
  • Item
    No Preview Available
    Background and Breakthrough Opioid Choice May Determine Different Pain Outcomes
    Wong, AK ; Vogrin, S ; Le, B ; Klepstad, P ; Rubio, JP ; Somogyi, AA ; Philip, J (ELSEVIER SCIENCE INC, 2024-03)