Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    Thumbnail Image
    The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson's disease (vol 5, 53, 2017)
    Finkelstein, DI ; Billings, JL ; Adlard, PA ; Ayton, S ; Sedjahtera, A ; Masters, CL ; Wilkins, S ; Shackleford, DM ; Charman, SA ; Bal, W ; Zawisza, IA ; Kurowska, E ; Gundlach, AL ; Ma, S ; Bush, AI ; Hare, DJ ; Doble, PA ; Crawford, S ; Gautier, ECL ; Parsons, J ; Huggins, P ; Barnham, KJ ; Cherny, RA (BMC, 2021-09-29)
  • Item
    Thumbnail Image
    The hypoxia imaging agent CuII(atsm) is neuroprotective and improves motor and cognitive functions in multiple animal models of Parkinson's disease
    Hung, LW ; Villemagne, VL ; Cheng, L ; Sherratt, NA ; Ayton, S ; White, AR ; Crouch, PJ ; Lim, S ; Leong, SL ; Wilkins, S ; George, J ; Roberts, BR ; Pham, CLL ; Liu, X ; Chiu, FCK ; Shackleford, DM ; Powell, AK ; Masters, CL ; Bush, AI ; O'Keefe, G ; Culvenor, JG ; Cappai, R ; Cherny, RA ; Donnelly, PS ; Hill, AF ; Finkelstein, DI ; Barnham, KJ (ROCKEFELLER UNIV PRESS, 2012-04-09)
    Parkinson's disease (PD) is a progressive, chronic disease characterized by dyskinesia, rigidity, instability, and tremors. The disease is defined by the presence of Lewy bodies, which primarily consist of aggregated α-synuclein protein, and is accompanied by the loss of monoaminergic neurons. Current therapeutic strategies only give symptomatic relief of motor impairment and do not address the underlying neurodegeneration. Hence, we have identified Cu(II)(atsm) as a potential therapeutic for PD. Drug administration to four different animal models of PD resulted in improved motor and cognition function, rescued nigral cell loss, and improved dopamine metabolism. In vitro, this compound is able to inhibit the effects of peroxynitrite-driven toxicity, including the formation of nitrated α-synuclein oligomers. Our results show that Cu(II)(atsm) is effective in reversing parkinsonian defects in animal models and has the potential to be a successful treatment of PD.
  • Item
    Thumbnail Image
    Ferroptosis and cell death mechanisms in Parkinson's disease
    Guiney, SJ ; Adlard, PA ; Bush, AI ; Finkelstein, DI ; Ayton, S (PERGAMON-ELSEVIER SCIENCE LTD, 2017-03)
    Symptoms of Parkinson's disease arise due to neuronal loss in multiple brain regions, especially dopaminergic neurons in the substantia nigra pars compacta. Current therapies aim to restore dopamine levels in the brain, but while these provide symptomatic benefit, they do not prevent ongoing neurodegeneration. Preventing neuronal death is a major strategy for disease-modifying therapies; however, while many pathogenic factors have been identified, it is currently unknown how neurons die in the disease. Ferroptosis, a recently identified iron-dependent cell death pathway, involves several molecular events that have previously been implicated in PD. This review will discuss ferroptosis and other cell death pathways implicated in PD neurodegeneration, with a focus on the potential to therapeutically target these pathways to slow the progression of this disease.
  • Item
    Thumbnail Image
    The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson's disease
    Finkelstein, DI ; Billings, JL ; Adlard, PA ; Ayton, S ; Sedjahtera, A ; Masters, CL ; Wilkins, S ; Shackleford, DM ; Charman, SA ; Bal, W ; Zawisza, IA ; Kurowska, E ; Gundlach, AL ; Ma, S ; Bush, AI ; Hare, DJ ; Doble, PA ; Crawford, S ; Gautier, ECL ; Parsons, J ; Huggins, P ; Barnham, KJ ; Cherny, RA (BMC, 2017-06-28)
    Elevated iron in the SNpc may play a key role in Parkinson's disease (PD) neurodegeneration since drug candidates with high iron affinity rescue PD animal models, and one candidate, deferirpone, has shown efficacy recently in a phase two clinical trial. However, strong iron chelators may perturb essential iron metabolism, and it is not yet known whether the damage associated with iron is mediated by a tightly bound (eg ferritin) or lower-affinity, labile, iron pool. Here we report the preclinical characterization of PBT434, a novel quinazolinone compound bearing a moderate affinity metal-binding motif, which is in development for Parkinsonian conditions. In vitro, PBT434 was far less potent than deferiprone or deferoxamine at lowering cellular iron levels, yet was found to inhibit iron-mediated redox activity and iron-mediated aggregation of α-synuclein, a protein that aggregates in the neuropathology. In vivo, PBT434 did not deplete tissue iron stores in normal rodents, yet prevented loss of substantia nigra pars compacta neurons (SNpc), lowered nigral α-synuclein accumulation, and rescued motor performance in mice exposed to the Parkinsonian toxins 6-OHDA and MPTP, and in a transgenic animal model (hA53T α-synuclein) of PD. These improvements were associated with reduced markers of oxidative damage, and increased levels of ferroportin (an iron exporter) and DJ-1. We conclude that compounds designed to target a pool of pathological iron that is not held in high-affinity complexes in the tissue can maintain the survival of SNpc neurons and could be disease-modifying in PD.
  • Item
    Thumbnail Image
    Transferrin protects against Parkinsonian neurotoxicity and is deficient in Parkinson's substantia nigra
    Ayton, S ; Lei, P ; Mclean, C ; Bush, A ; Finkelstein, D (NATURE PUBLISHING GROUP, 2016)
    Iron deposition in Parkinson's disease (PD) is a potential disease-modifying target. We previously showed that supplementation of the iron-exporter, ceruloplasmin, selectively corrected nigral iron elevation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model. Ceruloplasmin delivers iron to transferrin (Tf), the extracellular iron-transporting protein. We show that Tf protein levels are decreased in the nigra of post-mortem PD brains compared with controls (-35%; n=10 each). Because Tf traffics iron away from iron-replete tissues, we hypothesized that Tf supplementation could selectively facilitate iron export from the nigra in PD. In cultured neurons, Tf treatment corrected iron accumulation, and subcutaneous Tf to mice ameliorated iron accumulation and motor deficits in the MPTP model of PD. Although these data support a role for Tf in the disease mechanism for PD, and its potential use for correcting disorders of iron overload, Tf therapy also caused systemic iron depletion, which could limit its application for PD.
  • Item
    Thumbnail Image
    Lithium suppression of tau induces brain iron accumulation and neurodegeneration
    Lei, P ; Ayton, S ; Appukuttan, AT ; Moon, S ; Duce, JA ; Volitakis, I ; Cherny, R ; Wood, SJ ; Greenough, M ; Berger, G ; Pantelis, C ; McGorry, P ; Yung, A ; Finkelstein, DI ; Bush, AI (NATURE PUBLISHING GROUP, 2017-03)
    Lithium is a first-line therapy for bipolar affective disorder. However, various adverse effects, including a Parkinson-like hand tremor, often limit its use. The understanding of the neurobiological basis of these side effects is still very limited. Nigral iron elevation is also a feature of Parkinsonian degeneration that may be related to soluble tau reduction. We found that magnetic resonance imaging T2 relaxation time changes in subjects commenced on lithium therapy were consistent with iron elevation. In mice, lithium treatment lowers brain tau levels and increases nigral and cortical iron elevation that is closely associated with neurodegeneration, cognitive loss and parkinsonian features. In neuronal cultures lithium attenuates iron efflux by lowering tau protein that traffics amyloid precursor protein to facilitate iron efflux. Thus, tau- and amyloid protein precursor-knockout mice were protected against lithium-induced iron elevation and neurotoxicity. These findings challenge the appropriateness of lithium as a potential treatment for disorders where brain iron is elevated (for example, Alzheimer's disease), and may explain lithium-associated motor symptoms in susceptible patients.
  • Item
    Thumbnail Image
    Enduring Elevations of Hippocampal Amyloid Precursor Protein and Iron Are Features of β-Amyloid Toxicity and Are Mediated by Tau
    Li, X ; Lei, P ; Tuo, Q ; Ayton, S ; Li, Q-X ; Moon, S ; Volitakis, I ; Liu, R ; Masters, CL ; Finkelstein, DI ; Bush, AI (SPRINGER, 2015-10)
    The amyloid cascade hypothesis of Alzheimer's disease (AD) positions tau protein as a downstream mediator of β-amyloid (Aβ) toxicity This is largely based on genetic cross breeding, which showed that tau ablation in young (3-7-month-old) transgenic mice overexpressing mutant amyloid precursor protein (APP) abolished the phenotype of the APP AD model. This evidence is complicated by the uncertain impact of overexpressing mutant APP, rather than Aβ alone, and for potential interactions between tau and overexpressed APP. Cortical iron elevation is also implicated in AD, and tau promotes iron export by trafficking APP to the neuronal surface. Here, we utilized an alternative model of Aβ toxicity by directly injecting Aβ oligomers into the hippocampus of young and old wild-type and tau knockout mice. We found that ablation of tau protected against Aβ-induced cognitive impairment, hippocampal neuron loss, and iron accumulation. Despite injected human Aβ being eliminated after 5 weeks, enduring changes, including increased APP levels, tau reduction, tau phosphorylation, and iron accumulation, were observed. While the results from our study support the amyloid cascade hypothesis, they also suggest that downstream effectors of Aβ, which propagate toxicity after Aβ has been cleared, may be tractable therapeutic targets.
  • Item
    Thumbnail Image
    Clioquinol rescues Parkinsonism and dementia phenotypes of the tau knockout mouse
    Lei, P ; Ayton, S ; Appukuttan, AT ; Volitakis, I ; Adlard, PA ; Finkelstein, DI ; Bush, AI (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2015-09)
    Iron accumulation and tau protein deposition are pathological features of Alzheimer's (AD) and Parkinson's diseases (PD). Soluble tau protein is lower in affected regions of these diseases, and we previously reported that tau knockout mice display motor and cognitive behavioral abnormities, brain atrophy, neuronal death in substantia nigra, and iron accumulation in the brain that all emerged between 6 and 12 months of age. This argues for a loss of tau function in AD and PD. We also showed that treatment with the moderate iron chelator, clioquinol (CQ) restored iron levels and prevented neuronal atrophy and attendant behavioral decline in 12-month old tau KO mice when commenced prior to the onset of deterioration (6 months). However, therapies for AD and PD will need to treat the disease once it is already manifest. So, in the current study, we tested whether CQ could also rescue the phenotype of mice with a developed phenotype. We found that 5-month treatment of symptomatic (13 months old) tau KO mice with CQ increased nigral tyrosine hydroxylase phosphorylation (which induces activity) and reversed the motor deficits. Treatment also reversed cognitive deficits and raised BDNF levels in the hippocampus, which was accompanied by attenuated brain atrophy, and reduced iron content in the brain. These data raise the possibility that lowering brain iron levels in symptomatic patients could reverse neuronal atrophy and improve brain function, possibly by elevating neurotrophins.
  • Item
    Thumbnail Image
    Parkinson's Disease Iron Deposition Caused by Nitric Oxide-Induced Loss of β-Amyloid Precursor Protein
    Ayton, S ; Lei, P ; Hare, DJ ; Duce, JA ; George, JL ; Adlard, PA ; McLean, C ; Rogers, JT ; Cherny, RA ; Finkelstein, DI ; Bush, AI (SOC NEUROSCIENCE, 2015-02-25)
    Elevation of both neuronal iron and nitric oxide (NO) in the substantia nigra are associated with Parkinson's disease (PD) pathogenesis. We reported previously that the Alzheimer-associated β-amyloid precursor protein (APP) facilitates neuronal iron export. Here we report markedly decreased APP expression in dopaminergic neurons of human PD nigra and that APP(-/-) mice develop iron-dependent nigral cell loss. Conversely, APP-overexpressing mice are protected in the MPTP PD model. NO suppresses APP translation in mouse MPTP models, explaining how elevated NO causes iron-dependent neurodegeneration in PD.
  • Item
    Thumbnail Image
    Iron accumulation confers neurotoxicity to a vulnerable population of nigral neurons: implications for Parkinson's disease
    Ayton, S ; Lei, P ; Adlard, PA ; Volitakis, I ; Cherny, RA ; Bush, AI ; Finkelstein, DI (BMC, 2014-07-10)
    BACKGROUND: The substantia nigra (SN) midbrain nucleus is constitutively iron rich. Iron levels elevate further with age, and pathologically in Parkinson's disease (PD). Iron accumulation in PD SN involves dysfunction of ceruloplasmin (CP), which normally promotes iron export. We previously showed that ceruloplasmin knockout (CP KO) mice exhibit Parkinsonian neurodegeneration (~30% nigral loss) by 6 months, which is prevented by iron chelation. Here, we explored whether known iron-stressors of the SN (1) aging and (2) MPTP, would exaggerate the lesion severity of CP KO mice. FINDINGS: We show that while 5 month old CP KO mice exhibited nigral iron elevation and loss of SN neurons, surprisingly, aging CP KO mice to 14 months did not exacerbate iron elevation or SN neuronal loss. Unlike young mice, iron chelation therapy in CP KO mice between 9-14 months did not rescue neuronal loss. MPTP exaggerated iron elevation in young CP KO mice but did not increase cell death when compared to WTs. CONCLUSIONS: We conclude that there may exist a proportion of substantia nigra neurons that depend on CP for protection against iron neurotoxicity and could be protected by iron-based therapeutics. Death of the remaining neurons in Parkinson's disease is likely caused by parallel disease mechanisms, which may call for additional therapeutic options.