Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 78
  • Item
    No Preview Available
    Mice with an autism-associated R451C mutation in neuroligin-3 show intact attention orienting but atypical responses to methylphenidate and atomoxetine in the mouse-Posner task
    Li, S ; May, C ; Pang, TY ; Churilov, L ; Hannan, AJ ; Johnson, KA ; Burrows, EL (SPRINGER, 2024-03)
    RATIONALE: Atypical attention orienting has been associated with some autistic symptoms, but the neural mechanisms remain unclear. The human Posner task, a classic attention orienting paradigm, was recently adapted for use with mice, supporting the investigation of the neurobiological underpinnings of atypical attention orienting in preclinical mouse models. OBJECTIVE: The current study tested mice expressing the autism-associated R451C gene mutation in neuroligin-3 (NL3) on the mouse-Posner (mPosner) task. METHODS: NL3R451C and wild-type (WT) mice were trained to respond to a validly or invalidly cued target on a touchscreen. The cue was a peripheral non-predictive flash in the exogenous task and a central spatially predictive image in the endogenous task. The effects of dopaminergic- and noradrenergic-modulating drugs, methylphenidate and atomoxetine, on task performance were assessed. RESULTS: In both tasks, mice were quicker and more accurate in the validly versus invalidly cued trials, consistent with results in the human Posner task. NL3R451C and WT mice showed similar response times and accuracy but responded differently when treated with methylphenidate and atomoxetine. Methylphenidate impaired exogenous attention disengagement in NL3R451C mice but did not significantly affect WT mice. Atomoxetine impaired endogenous orienting in WT mice but did not significantly affect NL3R451C mice. CONCLUSIONS: NL3R451C mice demonstrated intact attention orienting but altered responses to the pharmacological manipulation of the dopaminergic and noradrenergic networks. These findings expand our understanding of the NL3R451C mutation by suggesting that this mutation may lead to selective alterations in attentional processes.
  • Item
    No Preview Available
    Increased paternal corticosterone exposure influences offspring behaviour and expression of urinary pheromones
    Hoffmann, LB ; McVicar, EA ; Harris, RV ; Collar-Fernandez, C ; Clark, MB ; Hannan, AJ ; Pang, TY (BMC, 2023-09-05)
    BACKGROUND: Studies have shown that paternal stress prior to conception can influence the innate behaviours of their offspring. The evolutionary impacts of such intergenerational effects are therefore of considerable interest. Our group previously showed in a model of daily stress that glucocorticoid treatment of adult male mouse breeders prior to conception leads to increased anxiety-related behaviours in male offspring. Here, we aimed to understand the transgenerational effects of paternal stress exposure on the social behaviour of progeny and its potential influence on reproductive success. RESULTS: We assessed social parameters including social reward, male attractiveness and social dominance, in the offspring (F1) and grand-offspring (F2). We report that paternal corticosterone treatment was associated with increased display of subordination towards other male mice. Those mice were unexpectedly more attractive to female mice while expressing reduced levels of the key rodent pheromone Darcin, contrary to its conventional role in driving female attraction. We investigated the epigenetic regulation of major urinary protein (Mup) expression by performing the first Oxford Nanopore direct methylation of sperm DNA in a mouse model of stress, but found no differences in Mup genes that could be attributed to corticosterone-treatment. Furthermore, no overt differences of the prefrontal cortex transcriptome were found in F1 offspring, implying that peripheral mechanisms are likely contributing to the phenotypic differences. Interestingly, no phenotypic differences were observed in the F2 grand-offspring. CONCLUSIONS: Overall, our findings highlight the potential of moderate paternal stress to affect intergenerational (mal)adaptive responses, informing future studies of adaptiveness in rodents, humans and other species.
  • Item
    No Preview Available
    Selective perforant-pathway atrophy in Huntington disease: MRI analysis of hippocampal subfields
    Wibawa, P ; Walterfang, M ; Malpas, CBB ; Glikmann-Johnston, Y ; Poudel, G ; Razi, A ; Hannan, AJJ ; Velakoulis, D ; Georgiou-Karistianis, N (WILEY, 2023-09)
    INTRODUCTION: While individuals with Huntington disease (HD) show memory impairment that indicates hippocampal dysfunction, the available literature does not consistently identify structural evidence for involvement of the whole hippocampus but rather suggests that hippocampal atrophy may be confined to certain hippocampal subregions. METHODS: We processed T1-weighted MRI from IMAGE-HD study using FreeSurfer 7.0 and compared the volumes of the hippocampal subfields among 36 early motor symptomatic (symp-HD), 40 pre-symptomatic (pre-HD), and 36 healthy control individuals across three timepoints over 36 months. RESULTS: Mixed-model analyses revealed significantly lower subfield volumes in symp-HD, compared with pre-HD and control groups, in the subicular regions of the perforant-pathway: presubiculum, subiculum, dentate gyrus, tail, and right molecular layer. These adjoining subfields aggregated into a single principal component, which demonstrated an accelerated rate of atrophy in the symp-HD. Volumes between pre-HD and controls did not show any significant difference. In the combined HD groups, CAG repeat length and disease burden score were associated with presubiculum, molecular layer, tail, and perforant-pathway subfield volumes. Hippocampal left tail and perforant-pathway subfields were associated with motor onset in the pre-HD group. CONCLUSIONS: Hippocampal subfields atrophy in early symptomatic HD affects key regions of the perforant-pathway, which may implicate the distinctive memory impairment at this stage of illness. Their volumetric associations with genetic and clinical markers suggest the selective susceptibility of these subfields to mutant Huntingtin and disease progression.
  • Item
    Thumbnail Image
    Environmental enrichment and exercise housing protocols for mice
    Love, CJ ; Gubert, C ; Renoir, T ; Hannan, AJ (ELSEVIER, 2022-12-16)
    Here, we present a protocol that allows comparison of the effects of the standard home cage, environmentally enriched home cage with additional super-enrichment, and the exercise (running wheels only) home cage in laboratory mice. We first describe the steps to assemble these three types of cages, respectively. We then detail the assembly of super-enrichment arenas, which provide additional stimulation beyond that provided by home-cage enrichment. This protocol can help to improve reproducibility of results from studies involving environmental enrichment and exercise by offering consistent housing conditions between laboratories. For complete details on the use and execution of this protocol, please refer to Gubert et al. (2021).
  • Item
    Thumbnail Image
    Chorea me a river: depression in Huntington's disease as an exemplar of precision medicine
    Hannan, AJ (OXFORD UNIV PRESS, 2022-11-02)
    This scientific commentary refers to 'Different depression: motivational anhedonia governs antidepressant efficacy in Huntington's disease' by McLauchlan et al. (https://doi.org/10.1093/braincomms/fcac278).
  • Item
    Thumbnail Image
    Use it or lose it: gene-environment interactions at the nexus of expanding genes and shrinking brains in Huntington's disease and other experience-dependent disorders of ageing
    Hannan, AJ (OXFORD UNIV PRESS, 2022-11-02)
    This scientific commentary refers to 'Intellectual enrichment and genetic modifiers of cognition and brain volume in Huntington's disease' by Papoutsi et al. (https://doi.org/10.1093/braincomms/fcac279).
  • Item
    Thumbnail Image
    Phosphoproteomic dysregulation in Huntington's disease mice is rescued by environmental enrichment
    Mees, I ; Li, S ; Tran, H ; Ang, C-S ; Williamson, NA ; Hannan, AJ ; Renoir, T (OXFORD UNIV PRESS, 2022-11-02)
    Huntington's disease is a fatal autosomal-dominant neurodegenerative disorder, characterized by neuronal cell dysfunction and loss, primarily in the striatum, cortex and hippocampus, causing motor, cognitive and psychiatric impairments. Unfortunately, no treatments are yet available to modify the progression of the disease. Recent evidence from Huntington's disease mouse models suggests that protein phosphorylation (catalysed by kinases and hydrolysed by phosphatases) might be dysregulated, making this major post-translational modification a potential area of interest to find novel therapeutic targets. Furthermore, environmental enrichment, used to model an active lifestyle in preclinical models, has been shown to alleviate Huntington's disease-related motor and cognitive symptoms. However, the molecular mechanisms leading to these therapeutic effects are still largely unknown. In this study, we applied a phosphoproteomics approach combined with proteomic analyses on brain samples from pre-motor symptomatic R6/1 Huntington's disease male mice and their wild-type littermates, after being housed either in environmental enrichment conditions, or in standard housing conditions from 4 to 8 weeks of age (n = 6 per group). We hypothesized that protein phosphorylation dysregulations occur prior to motor onset in this mouse model, in two highly affected brain regions, the striatum and hippocampus. Furthermore, we hypothesized that these phosphoproteome alterations are rescued by environmental enrichment. When comparing 8-week-old Huntington's disease mice and wild-type mice in standard housing conditions, our analysis revealed 229 differentially phosphorylated peptides in the striatum, compared with only 15 differentially phosphorylated peptides in the hippocampus (statistical thresholds fold discovery rate 0.05, fold change 1.5). At the same disease stage, minor differences were found in protein levels, with 24 and 22 proteins dysregulated in the striatum and hippocampus, respectively. Notably, we found no differences in striatal protein phosphorylation and protein expression when comparing Huntington's disease mice and their wild-type littermates in environmentally enriched conditions. In the hippocampus, only four peptides were differentially phosphorylated between the two genotypes under environmentally enriched conditions, and 22 proteins were differentially expressed. Together, our data indicates that protein phosphorylation dysregulations occur in the striatum of Huntington's disease mice, prior to motor symptoms, and that the kinases and phosphatases leading to these changes in protein phosphorylation might be viable drug targets to consider for this disorder. Furthermore, we show that an early environmental intervention was able to rescue the changes observed in protein expression and phosphorylation in the striatum of Huntington's disease mice and might underlie the beneficial effects of environmental enrichment, thus identifying novel therapeutic targets.
  • Item
    Thumbnail Image
    Group I Metabotropic Glutamate Receptors Modulate Motility and Enteric Neural Activity in the Mouse Colon
    Leembruggen, AJL ; Lu, Y ; Wang, H ; Uzungil, V ; Renoir, T ; Hannan, AJJ ; Stamp, LAA ; Hao, MMM ; Bornstein, JCC (MDPI, 2023-01)
    Glutamate is the major excitatory neurotransmitter in the central nervous system, and there is evidence that Group-I metabotropic glutamate receptors (mGlu1 and mGlu5) have established roles in excitatory neurotransmission and synaptic plasticity. While glutamate is abundantly present in the gut, it plays a smaller role in neurotransmission in the enteric nervous system. In this study, we examined the roles of Group-I mGlu receptors in gastrointestinal function. We investigated the expression of Grm1 (mGlu1) and Grm5 (mGlu5) in the mouse myenteric plexus using RNAscope in situ hybridization. Live calcium imaging and motility analysis were performed on ex vivo preparations of the mouse colon. mGlu5 was found to play a role in excitatory enteric neurotransmission, as electrically-evoked calcium transients were sensitive to the mGlu5 antagonist MPEP. However, inhibition of mGlu5 activity did not affect colonic motor complexes (CMCs). Instead, inhibition of mGlu1 using BAY 36-7620 reduced CMC frequency but did not affect enteric neurotransmission. These data highlight complex roles for Group-I mGlu receptors in myenteric neuron activity and colonic function.
  • Item
    Thumbnail Image
    Protocol Microbiota DNA isolation, 16S rRNA amplicon sequencing, and bioinformatic analysis for bacterial microbiome profiling of rodent fecal samples
    Love, CJ ; Gubert, C ; Kodikara, S ; Kong, G ; Cao, K-AL ; Hannan, AJ (ELSEVIER, 2022-12-16)
    Fecal samples are frequently used to characterize bacterial populations of the gastrointestinal tract. A protocol is provided to profile gut bacterial populations using rodent fecal samples. We describe the optimal procedures for collecting rodent fecal samples, isolating genomic DNA, 16S rRNA gene V4 region sequencing, and bioinformatic analyses. This protocol includes detailed instructions and example outputs to ensure accurate, reproducible results and data visualization. Comprehensive troubleshooting and limitation sections address technical and statistical issues that may arise when profiling microbiota. For complete details on the use and execution of this protocol, please refer to Gubert et al. (2022).
  • Item
    No Preview Available
    Remodelling of myelinated axons and oligodendrocyte differentiation is stimulated by environmental enrichment in the young adult brain
    Nicholson, M ; Wood, RJ ; Gonsalvez, DG ; Hannan, AJ ; Fletcher, JL ; Xiao, J ; Murray, SS (WILEY, 2022-12)
    Oligodendrocyte production and myelination continues lifelong in the central nervous system (CNS), and all stages of this process can be adaptively regulated by neuronal activity. While artificial exogenous stimulation of neuronal circuits greatly enhances oligodendrocyte progenitor cell (OPC) production and increases myelination during development, the extent to which physiological stimuli replicates this is unclear, particularly in the adult CNS when the rate of new myelin addition slows. Here, we used environmental enrichment (EE) to physiologically stimulate neuronal activity for 6 weeks in 9-week-old C57BL/six male and female mice and found no increase in compact myelin in the corpus callosum or somatosensory cortex. Instead, we observed a global increase in callosal axon diameter with thicker myelin sheaths, elongated paranodes and shortened nodes of Ranvier. These findings indicate that EE induced the dynamic structural remodelling of myelinated axons. Additionally, we observed a global increase in the differentiation of OPCs and pre-myelinating oligodendroglia in the corpus callosum and somatosensory cortex. Our findings of structural remodelling of myelinated axons in response to physiological neural stimuli during young adulthood provide important insights in understanding experience-dependent myelin plasticity throughout the lifespan and provide a platform to investigate axon-myelin interactions in a physiologically relevant context.