Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 64
  • Item
    No Preview Available
    Plasma glial fibrillary acidic protein is associated with reactive astrogliosis assessed via 18F-SMBT-1 PET
    Chatterjee, P ; Dore, V ; Pedrini, S ; Krishnadas, N ; Thota, RN ; Bourgeat, P ; Rainey‐Smith, S ; Burnham, SC ; Fowler, C ; Taddei, K ; Mulligan, RS ; Ames, D ; Masters, CL ; Fripp, J ; Rowe, C ; Martins, RN ; Villemagne, VL (Wiley, 2022-12)
    Background Reactive astrogliosis is an early event along the Alzheimer’s disease (AD) continuum. We have shown that plasma glial fibrillary acidic protein (GFAP), reflecting reactive astrogliosis, is elevated in cognitively unimpaired individuals with preclinical AD (Chatterjee et al., 2021). We reported similar findings using 18F‐SMBT‐1, a PET tracer for monoamine oxidase B (MAO‐B) (Villemagne et al., 2022). To provide further evidence of their relationship with reactive astrogliosis we investigated the association between GFAP and 18F‐SMBT‐1 in the same participants. Method Plasma GFAP, Aβ42 and Aβ40 levels were measured using the Single Molecule Array platform in 71 participants comprising 54 healthy controls (12 Aβ+ and 42 Aβ‐), 11 MCI(3 Aβ+ and 8 Aβ‐) and 6 probable AD(5 Aβ+ and 1 Aβ‐) patients from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing cohort. These participants also underwent 18F‐SMBT‐1 and Aβ PET imaging. Aβ imaging results were expressed in Centiloids (CL; ≥20 CL classified as Aβ+). 18F‐SMBT‐1 Standard Uptake Value Ratio (SUVR) were generated using the subcortical white matter as reference region. Linear regression analyses were carried out using plasma GFAP levels as the dependent variable and regional 18F‐SMBT‐1 SUVR as the independent variable, before and after adjusting for age, sex, soluble Aβ (plasma Aβ1‐42/Aβ1‐40 ratio) and insoluble Aβ (Aβ PET). Result Plasma GFAP was significantly associated with 18F‐SMBT‐1 SUVR in brain regions of early Aβ deposition, such as the supramarginal gyrus (SG, β=.361, p=.002), posterior cingulate (PC, β=.308, p=.009), lateral temporal (LT, β=.299, p=.011), lateral occipital (LO, β=.313, p=.008) before adjusting for any covariates. After adjusting for covariates age, sex and soluble Aβ, GFAP was significantly associated with 18F‐SMBT‐1 PET signal in the SG (β=.333, p<.001), PC (β=.278, p=.005), LT (β=.256, p=.009), LO (β=.296, p=.004) and superior parietal (SP, β=.243, p=.016). On adjusting for age, sex and insoluble Aβ, GFAP was significantly associated with SMBT‐1 PET in the SG (β=.211, p=.037) however only a trend towards significance was observed in the PC (β=.186, p=.052) and LT (β=.171, p=.067) (Figure 1). Conclusion There is an association between plasma GFAP and regional SMBT‐1 PET that is primarily driven by brain Aβ load.
  • Item
    No Preview Available
    Higher coffee consumption is associated with slower cognitive decline and Aβ‐amyloid accumulation over 126 months: Data from the AIBL study
    Gardener, SL ; Rainey‐Smith, SR ; Villemagne, VLL ; Fripp, J ; Dore, V ; Bourgeat, P ; Taddei, K ; Masters, CL ; Maruff, PT ; Rowe, CC ; Ames, D ; Martins, RN (Wiley, 2021-12)
    Background Worldwide, coffee is one of the most popular beverages consumed. Several studies have suggested a protective role of coffee, including reduced risk of Alzheimer’s disease (AD). However, there is limited longitudinal data available in cohorts of older adults reporting associations of coffee intake with cognitive decline, in distinct domains, and investigating the neuropathological mechanisms underpinning these associations. Method The aim of the current study was to investigate the relationship between self‐reported baseline coffee intake (mean = 280 ± 323 g/day) and cognitive decline assessed using a comprehensive neuropsychological battery, over 126 months, in 227 cognitively normal individuals from the Australian Imaging, Biomarkers, and Lifestyle (AIBL) study. We also sought to investigate the relationship between coffee intake and cerebral Aβ‐amyloid accumulation and brain volumes in a subset of individuals (n=60; and n=51, respectively) over 126 months. Result Higher baseline coffee consumption was associated with slower cognitive decline in executive function, attention, and the AIBL Preclinical AD Cognitive Composite (PACC; shown to reliably measure the first signs of cognitive decline in at‐risk cognitively normal populations) over 126 months. Higher baseline coffee consumption was also associated with slower Aβ‐amyloid accumulation over 126 months, and lower risk of transitioning from ‘negative’ Aβ‐amyloid status to ‘moderate’, and ‘very high’ Aβ‐amyloid burden over the same time period. There were no associations between coffee intake and atrophy in total grey matter, white matter, or hippocampal volume. Conclusion Our results further support the hypothesis that coffee intake may be a protective factor against AD, with increased coffee consumption reducing cognitive decline potentially by slowing cerebral Aβ‐amyloid accumulation, and thus attenuating the associated neurotoxicity from Aβ‐amyloid‐mediated oxidative stress and inflammatory processes. Further investigation is required to evaluate how coffee intake could be incorporated as one modifiable lifestyle factor aimed at delaying AD onset.
  • Item
    No Preview Available
    How lifestyle shapes the brain: Associations between physical activity, sleep, beta‐amyloid and cognitive function in older adults
    Sewell, KR ; Rainey‐Smith, SR ; Villemagne, VLL ; Peiffer, JJ ; Sohrabi, HR ; Taddei, K ; Ames, D ; Maruff, PT ; Laws, SM ; Masters, CL ; Rowe, CC ; Martins, RN ; Erickson, KI ; Brown, BM (Wiley, 2021-12)
    Abstract Background Lifestyle factors such as sleep and physical activity influence risk of cognitive decline and dementia. Higher habitual physical activity and optimal sleep are associated with better cognitive function and lower levels of Alzheimer’s disease biomarkers, including beta‐amyloid (Aß). There is currently a poor understanding of how physical activity may influence the relationship between sleep and cognition, and whether exercise and sleep interact to influence cognition and Aß. Developing this understanding is crucial for creating effective lifestyle interventions for dementia prevention. Method Data from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study were utilised to determine whether self‐reported physical activity moderates the cross‐sectional relationship between self‐reported sleep parameters (duration, efficiency, latency, disturbance, quality), cognitive function (episodic memory, attention and processing speed, executive function), and brain Aß (quantified by amyloid positron emission tomography, using the Centiloid scale). Analyses were adjusted for age, sex, APOE ε4 carriage, mood, premorbid intelligence, and collection point. Participants were 404 community‐dwelling cognitively normal older adults aged 60 and above (75.3 5.7 years). Data from a subset of participants (n = 220, aged 75.2 5.6 years) were used for analyses with AB as the outcome. Result Physical activity moderated the relationship between sleep duration and episodic memory (ß = ‐.09, SE = .03, p = .005), and sleep efficiency and episodic memory (ß = ‐.08, SE = .03, p = .016). Physical activity moderated the relationship between sleep duration and A® (ß = ‐.12, SE = .06, p = .036), and sleep quality and Aß (ß = .12, SE = .06, p = .029). Conclusion Physical activity may play an important role in the relationship between sleep and cognitive function, and sleep and brain Aß. Future longitudinal and intervention studies in this area are crucial for informing interventions for dementia prevention.
  • Item
    Thumbnail Image
    Cerebrospinal fluid levels of fatty acid-binding protein 3 are associated with likelihood of amyloidopathy in cognitively healthy individuals
    Dhiman, K ; Villemagne, VL ; Fowler, C ; Bourgeat, P ; Li, Q-X ; Collins, S ; Rowe, CC ; Masters, CL ; Ames, D ; Blennow, K ; Zetterberg, H ; Martins, RN ; Gupta, V (WILEY, 2022)
    INTRODUCTION: Fatty acid-binding protein 3 (FABP3) is a biomarker of neuronal membrane disruption, associated with lipid dyshomeostasis-a notable Alzheimer's disease (AD) pathophysiological change. We assessed the association of cerebrospinal fluid (CSF) FABP3 levels with brain amyloidosis and the likelihood/risk of developing amyloidopathy in cognitively healthy individuals. METHODS: FABP3 levels were measured in CSF samples of cognitively healthy participants, > 60 years of age (n = 142), from the Australian Imaging, Biomarkers & Lifestyle Flagship Study of Ageing (AIBL). RESULTS: FABP3 levels were positively associated with baseline brain amyloid beta (Aβ) load as measured by standardized uptake value ratio (SUVR, standardized β = 0.22, P = .009) and predicted the change in brain Aβ load (standardized β = 0.32, P = .004). Higher levels of CSF FABP3 (above median) were associated with a likelihood of amyloidopathy (odds ratio [OR] 2.28, 95% confidence interval [CI] 1.12 to 4.65, P = .023). DISCUSSION: These results support inclusion of CSF FABP3 as a biomarker in risk-prediction models of AD.
  • Item
    Thumbnail Image
    Plasma A beta 42/40 ratio, p-tau181, GFAP, and NfL across the Alzheimer's disease continuum: A cross-sectional and longitudinal study in the AIBL cohort
    Chatterjee, P ; Pedrini, S ; Doecke, JD ; Thota, R ; Villemagne, VL ; Dore, V ; Singh, AK ; Wang, P ; Rainey-Smith, S ; Fowler, C ; Taddei, K ; Sohrabi, HR ; Molloy, MP ; Ames, D ; Maruff, P ; Rowe, CC ; Masters, CL ; Martins, RN (WILEY, 2023-04-01)
    Introduction: Plasma amyloid beta (Aβ)1-42/Aβ1-40 ratio, phosphorylated-tau181 (p-tau181), glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) are putative blood biomarkers for Alzheimer's disease (AD). However, head-to-head cross-sectional and longitudinal comparisons of the aforementioned biomarkers across the AD continuum are lacking. Methods: Plasma Aβ1-42, Aβ1-40, p-tau181, GFAP, and NfL were measured utilizing the Single Molecule Array (Simoa) platform and compared cross-sectionally across the AD continuum, wherein Aβ-PET (positron emission tomography)–negative cognitively unimpaired (CU Aβ−, n = 81) and mild cognitive impairment (MCI Aβ−, n = 26) participants were compared with Aβ-PET–positive participants across the AD continuum (CU Aβ+, n = 39; MCI Aβ+, n = 33; AD Aβ+, n = 46) from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) cohort. Longitudinal plasma biomarker changes were also assessed in MCI (n = 27) and AD (n = 29) participants compared with CU (n = 120) participants. In addition, associations between baseline plasma biomarker levels and prospective cognitive decline and Aβ-PET load were assessed over a 7 to 10-year duration. Results: Lower plasma Aβ1-42/Aβ1-40 ratio and elevated p-tau181 and GFAP were observed in CU Aβ+, MCI Aβ+, and AD Aβ+, whereas elevated plasma NfL was observed in MCI Aβ+ and AD Aβ+, compared with CU Aβ− and MCI Aβ−. Among the aforementioned plasma biomarkers, for models with and without AD risk factors (age, sex, and apolipoprotein E (APOE) ε4 carrier status), p-tau181 performed equivalent to or better than other biomarkers in predicting a brain Aβ−/+ status across the AD continuum. However, for models with and without the AD risk factors, a biomarker panel of Aβ1-42/Aβ1-40, p-tau181, and GFAP performed equivalent to or better than any of the biomarkers alone in predicting brain Aβ−/+ status across the AD continuum. Longitudinally, plasma Aβ1-42/Aβ1-40, p-tau181, and GFAP were altered in MCI compared with CU, and plasma GFAP and NfL were altered in AD compared with CU. In addition, lower plasma Aβ1-42/Aβ1-40 and higher p-tau181, GFAP, and NfL were associated with prospective cognitive decline and lower plasma Aβ1-42/Aβ1-40, and higher p-tau181 and GFAP were associated with increased Aβ-PET load prospectively. Discussion: These findings suggest that plasma biomarkers are altered cross-sectionally and longitudinally, along the AD continuum, and are prospectively associated with cognitive decline and brain Aβ-PET load. In addition, although p-tau181 performed equivalent to or better than other biomarkers in predicting an Aβ−/+ status across the AD continuum, a panel of biomarkers may have superior Aβ−/+ status predictive capability across the AD continuum. HIGHLIGHTS: Area under the curve (AUC) of p-tau181 ≥ AUC of Aβ42/40, GFAP, NfL in predicting PET Aβ−/+ status (Aβ−/+). AUC of Aβ42/40+p-tau181+GFAP panel ≥ AUC of Aβ42/40/p-tau181/GFAP/NfL for Aβ−/+. Longitudinally, Aβ42/40, p-tau181, and GFAP were altered in MCI versus CU. Longitudinally, GFAP and NfL were altered in AD versus CU. Aβ42/40, p-tau181, GFAP, and NfL are associated with prospective cognitive decline. Aβ42/40, p-tau181, and GFAP are associated with increased PET Aβ load prospectively.
  • Item
    Thumbnail Image
    Plasma high-density lipoprotein cargo is altered in Alzheimer's disease and is associated with regional brain volume
    Pedrini, S ; Doecke, JD ; Hone, E ; Wang, P ; Thota, R ; Bush, A ; Rowe, CC ; Dore, V ; Villemagne, VL ; Ames, D ; Rainey-Smith, S ; Verdile, G ; Sohrabi, HR ; Raida, MR ; Taddei, K ; Gandy, S ; Masters, CL ; Chatterjee, P ; Martins, RN (WILEY, 2022-10)
    Cholesterol levels have been repeatedly linked to Alzheimer's Disease (AD), suggesting that high levels could be detrimental, but this effect is likely attributed to Low-Density Lipoprotein (LDL) cholesterol. On the other hand, High-Density Lipoproteins (HDL) cholesterol levels have been associated with reduced brain amyloidosis and improved cognitive function. However, recent findings have suggested that HDL-functionality, which depends upon the HDL-cargo proteins associated with HDL, rather than HDL levels, appears to be the key factor, suggesting a quality over quantity status. In this report, we have assessed the HDL-cargo (Cholesterol, ApoA-I, ApoA-II, ApoC-I, ApoC-III, ApoD, ApoE, ApoH, ApoJ, CRP, and SAA) in stable healthy control (HC), healthy controls who will convert to MCI/AD (HC-Conv) and AD patients (AD). Compared to HC we observed an increased cholesterol/ApoA-I ratio in AD and HC-Conv, as well as an increased ApoD/ApoA-I ratio and a decreased ApoA-II/ApoA-I ratio in AD. Higher cholesterol/ApoA-I ratio was also associated with lower cortical grey matter volume and higher ventricular volume, while higher ApoA-II/ApoA-I and ApoJ/ApoA-I ratios were associated with greater cortical grey matter volume (and for ApoA-II also with greater hippocampal volume) and smaller ventricular volume. Additionally, in a clinical status-independent manner, the ApoE/ApoA-I ratio was significantly lower in APOE ε4 carriers and lowest in APOE ε4 homozygous. Together, these data indicate that in AD patients the composition of HDL is altered, which may affect HDL functionality, and such changes are associated with altered regional brain volumetric data.
  • Item
    Thumbnail Image
    Comprehensive genetic analysis of the human lipidome identifies loci associated with lipid homeostasis with links to coronary artery disease
    Cadby, G ; Giles, C ; Melton, PE ; Huynh, K ; Mellett, NA ; Thy, D ; Anh, N ; Cinel, M ; Smith, A ; Olshansky, G ; Wang, T ; Brozynska, M ; Inouye, M ; McCarthy, NS ; Ariff, A ; Hung, J ; Hui, J ; Beilby, J ; Dube, M-P ; Watts, GF ; Shah, S ; Wray, NR ; Lim, WLF ; Chatterjee, P ; Martins, I ; Laws, SM ; Porter, T ; Vacher, M ; Bush, A ; Rowe, CC ; Villemagne, VL ; Ames, D ; Masters, CL ; Taddei, K ; Arnold, M ; Kastenmueller, G ; Nho, K ; Saykin, AJ ; Han, X ; Kaddurah-Daouk, R ; Martins, RN ; Blangero, J ; Meikle, PJ ; Moses, EK (NATURE PORTFOLIO, 2022-06-06)
    We integrated lipidomics and genomics to unravel the genetic architecture of lipid metabolism and identify genetic variants associated with lipid species putatively in the mechanistic pathway for coronary artery disease (CAD). We quantified 596 lipid species in serum from 4,492 individuals from the Busselton Health Study. The discovery GWAS identified 3,361 independent lipid-loci associations, involving 667 genomic regions (479 previously unreported), with validation in two independent cohorts. A meta-analysis revealed an additional 70 independent genomic regions associated with lipid species. We identified 134 lipid endophenotypes for CAD associated with 186 genomic loci. Associations between independent lipid-loci with coronary atherosclerosis were assessed in ∼456,000 individuals from the UK Biobank. Of the 53 lipid-loci that showed evidence of association (P < 1 × 10-3), 43 loci were associated with at least one lipid endophenotype. These findings illustrate the value of integrative biology to investigate the aetiology of atherosclerosis and CAD, with implications for other complex diseases.
  • Item
    Thumbnail Image
    Cerebrospinal Fluid Neurofilament Light Predicts Risk of Dementia Onset in Cognitively Healthy Individuals and Rate of Cognitive Decline in Mild Cognitive Impairment: A Prospective Longitudinal Study
    Dhiman, K ; Villemagne, VL ; Fowler, C ; Bourgeat, P ; Li, Q-X ; Collins, S ; Bush, A ; Rowe, CC ; Masters, CL ; Ames, D ; Blennow, K ; Zetterberg, H ; Martins, RN ; Gupta, V (MDPI, 2022-05)
    Background: Biomarkers that are indicative of early biochemical aberrations are needed to predict the risk of dementia onset and progression in Alzheimer’s disease (AD). We assessed the utility of cerebrospinal fluid (CSF) neurofilament light (NfL) chain for screening preclinical AD, predicting dementia onset among cognitively healthy (CH) individuals, and the rate of cognitive decline amongst individuals with mild cognitive impairment (MCI). Methods: Neurofilament light levels were measured in CSF samples of participants (CH, n = 154 and MCI, n = 32) from the Australian Imaging, Biomarkers and Lifestyle study of ageing (AIBL). Cases of preclinical AD were identified using biomarker-guided classification (CH, amyloid-β [Aβ]+, phosphorylated-tau [P-tau]+ and total-tau [T-tau]±; A+T+/N±). The prediction of dementia onset (questionable dementia) among CH participants was assessed as the risk of conversion from Clinical Dementia Rating [CDR = 0] to CDR ≥ 0.5 over 6 years. Mixed linear models were used to assess the utility of baseline CSF NfL levels for predicting the rate of cognitive decline among participants with MCI over 4.5 years. Results: Neurofilament light levels were significantly higher in preclinical AD participants (CH, A+T+/N±) as compared to A-T-N- (p < 0.001). Baseline levels of CSF NfL were higher in CH participants who converted to CDR ≥ 0.5 over 6 years (p = 0.045) and the risk of conversion to CDR ≥ 0.5 was predicted (hazard ratio [HR] 1.60, CI 1.03−2.48, p = 0.038). CH participants with CSF NfL > cut-off were at a higher risk of developing dementia (HR 4.77, CI 1.31−17.29, p = 0.018). Participants with MCI and with higher baseline levels of CSF NfL (>median) had a higher rate of decline in cognition over 4.5 years. Conclusion: An assessment of CSF NfL levels can help to predict dementia onset among CH vulnerable individuals and cognitive decline among those with MCI.
  • Item
    No Preview Available
    Non-negative matrix factorisation improves Centiloid robustness in longitudinal studies
    Bourgeat, P ; Dore, V ; Doecke, J ; Ames, D ; Masters, CL ; Rowe, CC ; Fripp, J ; Villemagne, VL (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2021-02-01)
    BACKGROUND: Centiloid was introduced to harmonise β-Amyloid (Aβ) PET quantification across different tracers, scanners and analysis techniques. Unfortunately, Centiloid still suffers from some quantification disparities in longitudinal analysis when normalising data from different tracers or scanners. In this work, we aim to reduce this variability using a different analysis technique applied to the existing calibration data. METHOD: All PET images from the Centiloid calibration dataset, along with 3762 PET images from the AIBL study were analysed using the recommended SPM pipeline. The PET images were SUVR normalised using the whole cerebellum. All SUVR normalised PiB images from the calibration dataset were decomposed using non-negative matrix factorisation (NMF). The NMF coefficients related to the first component were strongly correlated with global SUVR and were subsequently used as a surrogate for Aβ retention. For each tracer of the calibration dataset, the components of the NMF were computed in a way such that the coefficients of the first component would match those of the corresponding PiB. Given the strong correlations between the SUVR and the NMF coefficients on the calibration dataset, all PET images from AIBL were subsequently decomposed using the computed NMF, and their coefficients transformed into Centiloids. RESULTS: Using the AIBL data, the correlation between the standard Centiloid and the novel NMF-based Centiloid was high in each tracer. The NMF-based Centiloids showed a reduction of outliers, and improved longitudinal consistency. Furthermore, it removed the effects of switching tracers from the longitudinal variance of the Centiloid measure, when assessed using a linear mixed effects model. CONCLUSION: We here propose a novel image driven method to perform the Centiloid quantification. The methods is highly correlated with standard Centiloids while improving the longitudinal reliability when switching tracers. Implementation of this method across multiple studies may lend to more robust and comparable data for future research.
  • Item
    Thumbnail Image
    APOE ε2 resilience for Alzheimer's disease is mediated by plasma lipid species: Analysis of three independent cohort studies
    Wang, T ; Huynh, K ; Giles, C ; Mellett, NA ; Thy, D ; Anh, N ; Lim, WLF ; Smith, AAT ; Olshansky, G ; Cadby, G ; Hung, J ; Hui, J ; Beilby, J ; Watts, GF ; Chatterjee, P ; Martins, I ; Laws, SM ; Bush, A ; Rowe, CC ; Villemagne, VL ; Ames, D ; Masters, CL ; Taddei, K ; Dore, V ; Fripp, J ; Arnold, M ; Kastenmueller, G ; Nho, K ; Saykin, AJ ; Baillie, R ; Han, X ; Martins, RN ; Moses, EK ; Kaddurah-Daouk, R ; Meikle, PJ (WILEY, 2022-11)
    INTRODUCTION: The apolipoprotein E (APOE) genotype is the strongest genetic risk factor for late-onset Alzheimer's disease. However, its effect on lipid metabolic pathways, and their mediating effect on disease risk, is poorly understood. METHODS: We performed lipidomic analysis on three independent cohorts (the Australian Imaging, Biomarkers and Lifestyle [AIBL] flagship study, n = 1087; the Alzheimer's Disease Neuroimaging Initiative [ADNI] 1 study, n = 819; and the Busselton Health Study [BHS], n = 4384), and we defined associations between APOE ε2 and ε4 and 569 plasma/serum lipid species. Mediation analysis defined the proportion of the treatment effect of the APOE genotype mediated by plasma/serum lipid species. RESULTS: A total of 237 and 104 lipid species were associated with APOE ε2 and ε4, respectively. Of these 68 (ε2) and 24 (ε4) were associated with prevalent Alzheimer's disease. Individual lipid species or lipidomic models of APOE genotypes mediated up to 30% and 10% of APOE ε2 and ε4 treatment effect, respectively. DISCUSSION: Plasma lipid species mediate the treatment effect of APOE genotypes on Alzheimer's disease and as such represent a potential therapeutic target.