Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 25
  • Item
    Thumbnail Image
    L-3,4-dihydroxyphenylalanine (L-DOPA) modulates brain iron, dopaminergic neurodegeneration and motor dysfunction in iron overload and mutant alpha-synuclein mouse models of Parkinson's disease
    Billings, JL ; Gordon, SL ; Rawling, T ; Doble, PA ; Bush, AI ; Adlard, PA ; Finkelstein, DI ; Hare, DJ (WILEY, 2019-07)
    Treatment with the dopamine (DA) precursor l-3,4-dihydroxyphenylalanine (l-DOPA) provides symptomatic relief arising from DA denervation in Parkinson's disease. Mounting evidence that DA autooxidation to neurotoxic quinones is involved in Parkinson's disease pathogenesis has raised concern about potentiation of oxidative stress by l-DOPA. The rate of DA quinone formation increases in the presence of excess redox-active iron (Fe), which is a pathological hallmark of Parkinson's disease. Conversely, l-DOPA has pH-dependent Fe-chelating properties, and may act to 'redox silence' Fe and partially allay DA autoxidation. We examined the effects of l-DOPA in three murine models of parkinsonian neurodegeneration: early-life Fe overexposure in wild-type mice, transgenic human (h)A53T mutant α-synuclein (α-syn) over-expression, and a combined 'multi-hit' model of Fe-overload in hA53T mice. We found that l-DOPA was neuroprotective and prevented age-related Fe accumulation in the substantia nigra pars compacta (SNc), similar to the mild-affinity Fe chelator clioquinol. Chronic l-DOPA treatment showed no evidence of increased oxidative stress in wild-type midbrain and normalized motor performance, when excess Fe was present. Similarly, l-DOPA also did not exacerbate protein oxidation levels in hA53T mice, with or without excess nigral Fe, and showed evidence of neuroprotection. The effects of l-DOPA in Fe-fed hA53T mice were somewhat muted, suggesting that Fe-chelation alone is insufficient to attenuate neuron loss in an animal model also recapitulating altered DA metabolism. In summary, we found no evidence in any of our model systems that l-DOPA treatment accentuated neurodegeneration, suggesting DA replacement therapy does not contribute to oxidative stress in the Parkinson's disease brain.
  • Item
    Thumbnail Image
    Targeting the Progression of Parkinson's Disease
    George, JL ; Mok, S ; Moses, D ; Wilkins, S ; Bush, AI ; Cherny, RA ; Finkelstein, DI (BENTHAM SCIENCE PUBL LTD, 2009-03)
    By the time a patient first presents with symptoms of Parkinson's disease at the clinic, a significant proportion (50-70%) of the cells in the substantia nigra (SN) has already been destroyed. This degeneration progresses until, within a few years, most of the cells have died. Except for rare cases of familial PD, the initial trigger for cell loss is unknown. However, we do have some clues as to why the damage, once initiated, progresses unabated. It would represent a major advance in therapy to arrest cell loss at the stage when the patient first presents at the clinic. Current therapies for Parkinson's disease focus on relieving the motor symptoms of the disease, these unfortunately lose their effectiveness as the neurodegeneration and symptoms progress. Many experimental approaches are currently being investigated attempting to alter the progression of the disease. These range from replacement of the lost neurons to neuroprotective therapies; each of these will be briefly discussed in this review. The main thrust of this review is to explore the interactions between dopamine, alpha synuclein and redox-active metals. There is abundant evidence suggesting that destruction of SN cells occurs as a result of a self-propagating series of reactions involving dopamine, alpha synuclein and redox-active metals. A potent reducing agent, the neurotransmitter dopamine has a central role in this scheme, acting through redox metallo-chemistry to catalyze the formation of toxic oligomers of alpha-synuclein and neurotoxic metabolites including 6-hydroxydopamine. It has been hypothesized that these feed the cycle of neurodegeneration by generating further oxidative stress. The goal of dissecting and understanding the observed pathological changes is to identify therapeutic targets to mitigate the progression of this debilitating disease.
  • Item
    Thumbnail Image
    The hypoxia imaging agent CuII(atsm) is neuroprotective and improves motor and cognitive functions in multiple animal models of Parkinson's disease
    Hung, LW ; Villemagne, VL ; Cheng, L ; Sherratt, NA ; Ayton, S ; White, AR ; Crouch, PJ ; Lim, S ; Leong, SL ; Wilkins, S ; George, J ; Roberts, BR ; Pham, CLL ; Liu, X ; Chiu, FCK ; Shackleford, DM ; Powell, AK ; Masters, CL ; Bush, AI ; O'Keefe, G ; Culvenor, JG ; Cappai, R ; Cherny, RA ; Donnelly, PS ; Hill, AF ; Finkelstein, DI ; Barnham, KJ (ROCKEFELLER UNIV PRESS, 2012-04-09)
    Parkinson's disease (PD) is a progressive, chronic disease characterized by dyskinesia, rigidity, instability, and tremors. The disease is defined by the presence of Lewy bodies, which primarily consist of aggregated α-synuclein protein, and is accompanied by the loss of monoaminergic neurons. Current therapeutic strategies only give symptomatic relief of motor impairment and do not address the underlying neurodegeneration. Hence, we have identified Cu(II)(atsm) as a potential therapeutic for PD. Drug administration to four different animal models of PD resulted in improved motor and cognition function, rescued nigral cell loss, and improved dopamine metabolism. In vitro, this compound is able to inhibit the effects of peroxynitrite-driven toxicity, including the formation of nitrated α-synuclein oligomers. Our results show that Cu(II)(atsm) is effective in reversing parkinsonian defects in animal models and has the potential to be a successful treatment of PD.
  • Item
    Thumbnail Image
    The Down Syndrome-Associated Protein, Regulator of Calcineurin-1, is Altered in Alzheimer's Disease and Dementia with Lewy Bodies
    Malakooti, N ; FOWLER, C ; Volitakis, I ; McLean, CA ; Kim, RC ; Bush, A ; REMBACH, A ; PRITCHARD, MA ; Finkelstein, DI ; Adlard, PA (OMICS International, 2019)
    There is a known relationship between Alzheimer's disease (AD) and Down syndrome (DS), with the latter typically developing AD-like neuropathology in mid-life. In order to further understand this relationship we examined intersectin-1 (ITSN1) and the regulator of calcineurin-1 (RCAN1), proteins involved in endosomal and lysosomal trafficking that are over-expressed in DS. We examined RCAN1 and ITSN1 levels (both long (-L) and short (-S) isoforms) and the level of endogenous metals in White Blood Cells (WBCs) collected from AD patients who were enrolled in the Australian Imaging, Biomarker and Lifestyle Study on Ageing (AIBL). We also examined RCAN1 and ITSN1-S and -L in post-mortem brain tissue in a separate cohort of patients with AD or other types of dementia including Dementia with Lewy Bodies (DLB) and non-Alzheimer's disease dementia. We found that RCAN1 was significantly elevated in AD and DLB brain compared with controls, but there was no difference in the level of RCAN1 in WBCs of AD patients. There were no differences in the levels of ITSN1-L and -S between AD and the control, nor between other types of dementia and the control. We found that there were no differences in the levels of metals between AD and the control WBCs. In conclusion, our data demonstrate that RCAN1 is differentially regulated between the peripheral and central compartments in AD and should be further investigated to understand its potential role in dementia of AD and DLB.
  • Item
    Thumbnail Image
    Visualising mouse neuroanatomy and function by metal distribution using laser ablation-inductively coupled plasma-mass spectrometry imaging (vol 6, pg 5383, 2015)
    Paul, B ; Hare, DJ ; Bishop, DP ; Paton, C ; Van, TN ; Cole, N ; Niedwiecki, MM ; Andreozzi, E ; Vais, A ; Billings, JL ; Bray, L ; Bush, AI ; McColl, G ; Roberts, BR ; Adlard, PA ; Finkelstein, DI ; Hellstrom, J ; Hergt, JM ; Woodhead, JD ; Doble, PA (ROYAL SOC CHEMISTRY, 2016)
    [This corrects the article DOI: 10.1039/C5SC02231B.].
  • Item
    Thumbnail Image
    Ferroptosis and cell death mechanisms in Parkinson's disease
    Guiney, SJ ; Adlard, PA ; Bush, AI ; Finkelstein, DI ; Ayton, S (PERGAMON-ELSEVIER SCIENCE LTD, 2017-03)
    Symptoms of Parkinson's disease arise due to neuronal loss in multiple brain regions, especially dopaminergic neurons in the substantia nigra pars compacta. Current therapies aim to restore dopamine levels in the brain, but while these provide symptomatic benefit, they do not prevent ongoing neurodegeneration. Preventing neuronal death is a major strategy for disease-modifying therapies; however, while many pathogenic factors have been identified, it is currently unknown how neurons die in the disease. Ferroptosis, a recently identified iron-dependent cell death pathway, involves several molecular events that have previously been implicated in PD. This review will discuss ferroptosis and other cell death pathways implicated in PD neurodegeneration, with a focus on the potential to therapeutically target these pathways to slow the progression of this disease.
  • Item
    Thumbnail Image
    The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson's disease
    Finkelstein, DI ; Billings, JL ; Adlard, PA ; Ayton, S ; Sedjahtera, A ; Masters, CL ; Wilkins, S ; Shackleford, DM ; Charman, SA ; Bal, W ; Zawisza, IA ; Kurowska, E ; Gundlach, AL ; Ma, S ; Bush, AI ; Hare, DJ ; Doble, PA ; Crawford, S ; Gautier, ECL ; Parsons, J ; Huggins, P ; Barnham, KJ ; Cherny, RA (BMC, 2017-06-28)
    Elevated iron in the SNpc may play a key role in Parkinson's disease (PD) neurodegeneration since drug candidates with high iron affinity rescue PD animal models, and one candidate, deferirpone, has shown efficacy recently in a phase two clinical trial. However, strong iron chelators may perturb essential iron metabolism, and it is not yet known whether the damage associated with iron is mediated by a tightly bound (eg ferritin) or lower-affinity, labile, iron pool. Here we report the preclinical characterization of PBT434, a novel quinazolinone compound bearing a moderate affinity metal-binding motif, which is in development for Parkinsonian conditions. In vitro, PBT434 was far less potent than deferiprone or deferoxamine at lowering cellular iron levels, yet was found to inhibit iron-mediated redox activity and iron-mediated aggregation of α-synuclein, a protein that aggregates in the neuropathology. In vivo, PBT434 did not deplete tissue iron stores in normal rodents, yet prevented loss of substantia nigra pars compacta neurons (SNpc), lowered nigral α-synuclein accumulation, and rescued motor performance in mice exposed to the Parkinsonian toxins 6-OHDA and MPTP, and in a transgenic animal model (hA53T α-synuclein) of PD. These improvements were associated with reduced markers of oxidative damage, and increased levels of ferroportin (an iron exporter) and DJ-1. We conclude that compounds designed to target a pool of pathological iron that is not held in high-affinity complexes in the tissue can maintain the survival of SNpc neurons and could be disease-modifying in PD.
  • Item
    Thumbnail Image
    Transferrin protects against Parkinsonian neurotoxicity and is deficient in Parkinson's substantia nigra
    Ayton, S ; Lei, P ; Mclean, C ; Bush, A ; Finkelstein, D (NATURE PUBLISHING GROUP, 2016)
    Iron deposition in Parkinson's disease (PD) is a potential disease-modifying target. We previously showed that supplementation of the iron-exporter, ceruloplasmin, selectively corrected nigral iron elevation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model. Ceruloplasmin delivers iron to transferrin (Tf), the extracellular iron-transporting protein. We show that Tf protein levels are decreased in the nigra of post-mortem PD brains compared with controls (-35%; n=10 each). Because Tf traffics iron away from iron-replete tissues, we hypothesized that Tf supplementation could selectively facilitate iron export from the nigra in PD. In cultured neurons, Tf treatment corrected iron accumulation, and subcutaneous Tf to mice ameliorated iron accumulation and motor deficits in the MPTP model of PD. Although these data support a role for Tf in the disease mechanism for PD, and its potential use for correcting disorders of iron overload, Tf therapy also caused systemic iron depletion, which could limit its application for PD.
  • Item
    Thumbnail Image
    Zinc affects the proteolytic stability of Apolipoprotein E in an isoform-dependent way
    Xu, H ; Gupta, VB ; Martins, IJ ; Martins, RN ; Fowler, CJ ; Bush, AI ; Finkelstein, DI ; Adlard, PA (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2015-09)
    The pathological role of zinc in Alzheimer's disease (AD) is not yet fully elucidated, but there is strong evidence that zinc homeostasis is impaired in the AD brain and that this contributes to disease pathogenesis. In this study we examined the effects of zinc on the proteolysis of synthetic Apolipoprotein E (ApoE), a protein whose allelic variants differentially contribute to the onset/progression of disease. We have demonstrated that zinc promotes the proteolysis (using plasma kallikrein, thrombin and chymotrypsin) of synthetic ApoE in an isoform-specific way (E4>E2 and E3), resulting in more ApoE fragments, particularly for ApoE4. In the absence of exogenous proteases there was no effect of metal modulation on either lipidated or non-lipidated ApoE isoforms. Thus, increased zinc in the complex milieu of the ageing and AD brain could reduce the level of normal full-length ApoE and increase other forms that are involved in neurodegeneration. We further examined human plasma samples from people with different ApoE genotypes. Consistent with previous studies, plasma ApoE levels varied according to different genotypes, with ApoE2 carriers showing the highest total ApoE levels and ApoE4 carriers the lowest. The levels of plasma ApoE were not affected by either the addition of exogenous metals (copper, zinc or iron) or by chelation. Taken together, our study reveals that zinc may contribute to the pathogenesis of AD by affecting the proteolysis of ApoE, which to some extent explains why APOE4 carriers are more susceptible to AD.
  • Item
    Thumbnail Image
    High Order W02-Reactive Stable Oligomers of Amyloid-β are Produced in vivo and in vitro via Dialysis and Filtration of Synthetic Amyloid-β Monomer
    Robb, E ; Perez, K ; Hung, LW ; Masters, CL ; Barnham, KJ ; Cherny, RA ; Bush, AI ; Adlard, PA ; Finkelstein, DI (IOS PRESS, 2015)
    Oligomeric forms of amyloid-β (Aβ) are thought to be responsible for the pathogenesis of Alzheimer's disease. While many oligomers of Aβ are thought to be naturally occurring in the brain of humans and/or transgenic animals, it is well known that Aβ oligomers are also readily produced in vitro in the laboratory. In recent studies, we discovered that synthetic monomeric Aβ (4.7 kDa) could be transformed by microdialysis to higher molecular weight species (approximately 56 kDa, by western blot). Surface-enhanced laser desorption/ionization mass spectrometry and electron microscopy further identified these species' as potential Aβ oligomers. The production of similar species could also be produced by centrifugal filtration and this formation was concentration and pore-size dependent. These higher order species of Aβ were resistant to dissolution in NaOH, HFIP, formic acid, urea, and guanidine. We postulate that we have identified a novel way of producing a high order species of oligomeric Aβ and we provide evidence to suggest that Aβ oligomers can quite easily be a product of normal laboratory practices. These data suggest that the experimental detection of higher order oligomers in tissues derived from Alzheimer's disease brains or from animal models of disease could, in some cases, be a product the method of analysis.