Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 184
  • Item
    No Preview Available
    Lipidomic signatures for APOE genotypes provides new insights about mechanisms of resilience in Alzheimer’s disease
    Wang, T ; Huynh, K ; Giles, C ; Lim, WLF ; Duong, T ; Mellett, NA ; Smith, A ; Olshansky, G ; Drew, BG ; Cadby, G ; Melton, PE ; Hung, J ; Beilby, J ; Watts, GF ; Chatterjee, P ; Martins, I ; Laws, SM ; Bush, AI ; Rowe, CC ; Villemagne, VL ; Ames, D ; Masters, CL ; Arnold, M ; Kastenmüller, G ; Nho, K ; Saykin, AJ ; Baillie, R ; Han, X ; Martins, RN ; Moses, E ; Kaddurah‐Daouk, RF ; Meikle, PJ (Wiley, 2021-12)
    Background The apolipoprotein E gene (APOE) genotype is the first and strongest genetic risk factor for late‐onset Alzheimer’s disease and has emerged as a novel therapeutic target for AD. The encoded protein (Apolipoprotein E, APOE) is well‐known to be involved in lipoprotein transport and metabolism, but its effect on lipid metabolic pathways and the potential mediating effect of these on disease risk have not been fully defined. Method We performed lipidomic analysis on three independent cohorts (AIBL, n = 693; ADNI, n=207; BHS, n=4,384) and defined the association between APOE polymorphisms (ε4 and ε2) and plasma lipid species. To identify associations independent of lipoprotein metabolism, the analyses was performed with adjustment for clinical lipids (total cholesterol, HDL‐C and triglycerides). Causal mediation analysis was performed to estimate the proportion of risk in the outcome model explained by a direct effect of APOE genotype on prevalent AD — the average direct effect (ADE) — and the proportion that was mediated by lipid species or lipidomic risk models — the average causal mediation effect (ACME). Result We identified multiple associations of species from lipid classes such as ceramide, hexosylceramide, sphingomyelin, plasmalogens, alkyldiacylglycerol and cholesteryl esters with APOE polymorphisms (ε4 and ε2) that were independent of clinical lipoprotein measurements. There were 104 and 237 lipid species associated with APOE ε4 and ε2 respectively which were largely discordant. Of these 116 were also associated with Alzheimer’s disease. Individual lipid species (notably the alkyldiacylglycerol subspecies) or lipidomic risk models of APOE genotypes mediated up to 10% and 30% of APOE ε4 and ε2 treatment effect on AD risks respectively. Conclusion We demonstrate a strong relationship between APOE polymorphisms and peripheral lipid species. Lipids species mediate a proportion of the effects of APOE genotypes in risk of AD, particularly resilience with e2. Our results highlight the involvement of lipids in how APOE e2 mediates its resilience to AD and solidify their involvement with the disease pathway.
  • Item
    No Preview Available
    Relationship between amyloid and tau levels and its impact on tau spreading
    Dore, V ; Krishnadas, N ; Bourgeat, P ; Huang, K ; Li, S ; Burnham, SC ; Masters, CL ; Fripp, J ; Villemagne, VL ; Rowe, CC (Wiley, 2021-12)
    Background Previous studies have shown that Aß‐amyloid (Aß) likely promotes tau to spread beyond the medial temporal lobe. However, the Aß levels necessary for tau to spread in the neocortex is still unclear. Method 466 participants underwent tau imaging with [18F]MK6420 and Aß imaging with [18F]NAV4694 (Fig. 1). Aß scans were quantified on the Centiloid (CL) scale with a cut‐off of 25CL for abnormal levels of Aß (A+). Tau scans were quantified in three regions of interest (ROI) (mesial temporal (Me); temporoparietal neocortex (Te); and rest of neocortex (R)) and four mesial temporal region (entorhinal cortex, amygdala, hippocampus and parahippocampus) using the cerebellar cortex as reference region. Regional tau thresholds were established as the 95%ile of the cognitively unimpaired A‐ subjects. The prevalence of abnormal tau levels (T+) along the Centiloid continuum was determined. Result The plots of prevalence of T+ (Fig. 2) show earlier and greater increase along the Centiloid continuum in the medial temporal area compared to neocortex. Prevalence of T+ was low but associated with Aß level between 10‐40 CL reaching 23% in Me, 15% in Te and 11% in R. Between 40‐70 CL, the prevalence of T+ subjects per CL increased four‐fold faster and at 70 CL was 64% in Me, 51% in Te and 37% in R. In cognitively unimpaired (Fig. 3), there were no T+ in R below 50 CL. The highest prevalence of T+ was found in the entorhinal cortex, reaching 40% at 40 CL and 80% at 60 CL. Conclusion Outside the entorhinal cortex, abnormal levels of cortical tau on PET are rarely found with Aß levels below 40 CL. Above 40 CL prevalence of T+ accelerates in all areas. Moderate Aß levels are required before neocortical tau becomes detectable.
  • Item
    No Preview Available
    Investigating the impact of scatter correction on Centiloid
    Li, S ; O'Keefe, G ; Gillman, A ; Burnham, SC ; Masters, CL ; Williams, R ; Rowe, CC ; Fripp, J ; Bourgeat, P ; Villemagne, VL ; Dore, V (Wiley, 2021-12)
    Abstract Background Centiloid (CL) is a semiquantitative measure of amyloid‐β burden based on the ratio between neo‐cortical target region and the whole cerebellum. Photon scatter is one of the major sources of noise in PET data. Scatter correction methods are very different across PET cameras. In this study, we investigate how scatter correction affects the CL for inter/intra‐cameras by comparing PET images with/without scatter correction. Method 203 subjects (Siemens mCT Biography (N=109), Philips Gemini TF 64 (N=94)) from the AIBL study were scanned with 18F‐NAV6240. All PET images were reconstructed off‐line with scatter correction enabled and then disabled. All images were processed by CapAIBL to generate CL values. The ΔCL, which was calculated as the difference between the scatter corrected CL and non‐scatter corrected CL, was investigated to quantify the impact of scatter correction. For the intra‐camera comparison, all subjects were categorised in three groups based on the head tilt along anteroposterior axis compared to the MNI‐152 template. For inter‐camera comparison, the head tilt angle was included as covariate into an ANOVA. Hierarchical linear regressions that included head tilt and camera models were used as covariates to investigate their effect on CL. Result Figure 1 shows that scatter correction has a larger impact on the cerebellum cortex than in neocortex. Figure 2 shows that scatter correction depends on the head position, and it has more impact on subjects with higher CL for both cameras. Figure 3 presents that scatter corrections from two different cameras have different impact on CL values. Both head tilt and camera model had an impact on the scatter correction with (F=19.5, p=1.67e‐5) and (F=109.4, p=1.1e‐20), respectively. The b coefficients were 0.38CL/degree for head tilt and 8.2CL for the camera model, where more scatter is corrected on the Siemens CT than on the Philips Gemini TF. Conclusion Our results show that difference in scatter correction from different cameras have a significant impact on CL, it is yet to be known whether it is caused by hardware difference or software difference. Additional investigations using test‐retest data is needed to further characterize the real impact of scatter correction on Centiloid.
  • Item
    No Preview Available
    Higher coffee consumption is associated with slower cognitive decline and Aβ‐amyloid accumulation over 126 months: Data from the AIBL study
    Gardener, SL ; Rainey‐Smith, SR ; Villemagne, VLL ; Fripp, J ; Dore, V ; Bourgeat, P ; Taddei, K ; Masters, CL ; Maruff, PT ; Rowe, CC ; Ames, D ; Martins, RN (Wiley, 2021-12)
    Background Worldwide, coffee is one of the most popular beverages consumed. Several studies have suggested a protective role of coffee, including reduced risk of Alzheimer’s disease (AD). However, there is limited longitudinal data available in cohorts of older adults reporting associations of coffee intake with cognitive decline, in distinct domains, and investigating the neuropathological mechanisms underpinning these associations. Method The aim of the current study was to investigate the relationship between self‐reported baseline coffee intake (mean = 280 ± 323 g/day) and cognitive decline assessed using a comprehensive neuropsychological battery, over 126 months, in 227 cognitively normal individuals from the Australian Imaging, Biomarkers, and Lifestyle (AIBL) study. We also sought to investigate the relationship between coffee intake and cerebral Aβ‐amyloid accumulation and brain volumes in a subset of individuals (n=60; and n=51, respectively) over 126 months. Result Higher baseline coffee consumption was associated with slower cognitive decline in executive function, attention, and the AIBL Preclinical AD Cognitive Composite (PACC; shown to reliably measure the first signs of cognitive decline in at‐risk cognitively normal populations) over 126 months. Higher baseline coffee consumption was also associated with slower Aβ‐amyloid accumulation over 126 months, and lower risk of transitioning from ‘negative’ Aβ‐amyloid status to ‘moderate’, and ‘very high’ Aβ‐amyloid burden over the same time period. There were no associations between coffee intake and atrophy in total grey matter, white matter, or hippocampal volume. Conclusion Our results further support the hypothesis that coffee intake may be a protective factor against AD, with increased coffee consumption reducing cognitive decline potentially by slowing cerebral Aβ‐amyloid accumulation, and thus attenuating the associated neurotoxicity from Aβ‐amyloid‐mediated oxidative stress and inflammatory processes. Further investigation is required to evaluate how coffee intake could be incorporated as one modifiable lifestyle factor aimed at delaying AD onset.
  • Item
    No Preview Available
    Differential associations of modifiable and non‐modifiable dementia risk factors with memory decline and hippocampal volume loss in Aβ‐ and Aβ+ cognitively normal older adults
    Rosenich, E ; Pase, MP ; Yassi, N ; Fripp, J ; Laws, SM ; Fowler, CJ ; Rowe, CC ; Masters, CL ; Maruff, PT ; Lim, YY ; Group, AIBLR (Wiley, 2021-12)
    Abstract Background The extent to which modifiable and non‐modifiable risk factors contribute to cognitive decline in older people remains unclear. We sought to determine the association of modifiable and non‐modifiable components included in the Cardiovascular Risk Factors, Aging, and Incidence of Dementia (CAIDE) score with memory decline and brain volume loss in cognitively normal (CN) older adults, taking Aβ status into account. Method AIBL study participants (age range: 60‐90) who completed ≥2 neuropsychological assessments and an Aβ PET scan (N=626) were included in this study. We computed the standard CAIDE (age, sex, APOE ε4 status, education, hypertension, body mass index, hypercholesterinemia, physical inactivity), and a modifiable CAIDE (modCAIDE; education, modifiable vascular risk factors) for each participant. Aβ+ was classified using a Centiloid ≥25. Linear mixed models assessed interactions between each CAIDE score on episodic memory (EM) and hippocampal volume (HV) over time in Aβ‐ and Aβ+ CNs. Non‐modifiable variables from the standard CAIDE (age, sex, ε4) were included as separate predictors in all modCAIDE models to assess differential associations. Result We observed a significant standard CAIDE x time interaction on EM decline in Aβ+ (β=‐0.08(0.04); p=0.02) and Aβ‐ participants (β=‐4.07(1.13); p<0.001), and a significant standard CAIDE x time interaction on HV loss in Aβ+ participants only (β=‐0.06(0.02); p=0.003). When modifiable and non‐modifiable CAIDE components were considered separately, we observed a significant ε4 x time interaction only for EM decline (β=‐0.32(0.07); p<0.001) and HV loss (β=‐0.13(0.04); p<0.001) in Aβ+ participants, but no significant modCAIDE x time interaction (both p’s>0.29). In Aβ‐ participants, we observed a significant modCAIDE x time interaction on memory decline (β=‐0.04(0.02); p=0.02), but no significant ε4 x time interaction (β=‐0.07(0.04); p=0.11). No significant ε4 x time or modCAIDE x time interactions were observed for HV loss in Aβ‐ participants. Conclusion Our results are consistent with previous studies showing that ε4 is associated with an increased rate of EM decline and HV loss in Aβ+ CNs. In Aβ‐ CNs, lower prevalence of modifiable cardiovascular risk factors was associated with better EM performance over time, suggesting interventions to reduce modifiable risk factors could be beneficial in this group.
  • Item
    No Preview Available
    How lifestyle shapes the brain: Associations between physical activity, sleep, beta‐amyloid and cognitive function in older adults
    Sewell, KR ; Rainey‐Smith, SR ; Villemagne, VLL ; Peiffer, JJ ; Sohrabi, HR ; Taddei, K ; Ames, D ; Maruff, PT ; Laws, SM ; Masters, CL ; Rowe, CC ; Martins, RN ; Erickson, KI ; Brown, BM (Wiley, 2021-12)
    Abstract Background Lifestyle factors such as sleep and physical activity influence risk of cognitive decline and dementia. Higher habitual physical activity and optimal sleep are associated with better cognitive function and lower levels of Alzheimer’s disease biomarkers, including beta‐amyloid (Aß). There is currently a poor understanding of how physical activity may influence the relationship between sleep and cognition, and whether exercise and sleep interact to influence cognition and Aß. Developing this understanding is crucial for creating effective lifestyle interventions for dementia prevention. Method Data from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study were utilised to determine whether self‐reported physical activity moderates the cross‐sectional relationship between self‐reported sleep parameters (duration, efficiency, latency, disturbance, quality), cognitive function (episodic memory, attention and processing speed, executive function), and brain Aß (quantified by amyloid positron emission tomography, using the Centiloid scale). Analyses were adjusted for age, sex, APOE ε4 carriage, mood, premorbid intelligence, and collection point. Participants were 404 community‐dwelling cognitively normal older adults aged 60 and above (75.3 5.7 years). Data from a subset of participants (n = 220, aged 75.2 5.6 years) were used for analyses with AB as the outcome. Result Physical activity moderated the relationship between sleep duration and episodic memory (ß = ‐.09, SE = .03, p = .005), and sleep efficiency and episodic memory (ß = ‐.08, SE = .03, p = .016). Physical activity moderated the relationship between sleep duration and A® (ß = ‐.12, SE = .06, p = .036), and sleep quality and Aß (ß = .12, SE = .06, p = .029). Conclusion Physical activity may play an important role in the relationship between sleep and cognitive function, and sleep and brain Aß. Future longitudinal and intervention studies in this area are crucial for informing interventions for dementia prevention.
  • Item
    No Preview Available
    Plasma neurofilament light chain and phosphorylated tau 181 in neurodegenerative and psychiatric disorders: moving closer towards a simple diagnostic test like a 'C‐reactive protein' for the brain?
    Eratne, D ; Santillo, A ; Li, Q ; Kang, M ; Keem, M ; Lewis, C ; Loi, SM ; Walterfang, M ; Hansson, O ; Janelidze, S ; Yassi, N ; Watson, R ; Berkovic, SF ; Masters, CL ; Collins, S ; Velakoulis, D (Wiley, 2021-12)
    Abstract Background Accurate, timely diagnosis of neurodegenerative disorders, in particular distinguishing primary psychiatric from neurological disorders and in younger people, can be challenging. There is a need for biomarkers to reduce the diagnostic odyssey and improve outcomes. Neurofilament light (NfL) has shown promise as a diagnostic biomarker in a wide range of disorders. Our Markers in Neuropsychiatric Disorders (MiND) Study builds on our pilot (Eratne et al, ANZJP, 2020), to explore the diagnostic and broader utility of plasma and cerebrospinal fluid (CSF) NfL and other novel markers such as phosphorylated tau 181 (p‐tau181), in a broad range of psychiatric and neurodegenerative/neurological disorders, with a view of translation into routine clinical practice. Methods We assessed plasma and/or CSF NfL and p‐tau181 concentrations in broad cohorts, including: patients assessed for neurocognitive/psychiatric symptoms at Neuropsychiatry and Melbourne Young‐Onset Dementia services and other services, in a wide range of disorders including Alzheimer disease, frontotemporal dementia, schizophrenia, bipolar disorder, depression, Niemann‐Pick Type C, epilepsy, functional neurological disorders. The most recent primary consensus diagnosis informed by established diagnostic criteria was categorised: primary psychiatric disorder (PPD), neurodegenerative/neurological disorder (ND), or healthy controls (HC). Results Findings from over 500 patients/participants will be presented, which indicate that CSF and plasma NfL levels are significantly elevated in a broad range of ND compared to a broad range of PPD, and HC, and bvFTD progressors from phenocopy syndromes, differentiating with areas under the curve of >0.90, sensitivity and specificity >90%. Plasma P‐tau181 levels distinguished Alzheimer disease (mainly younger sporadic), compared to other neurodegenerative disorders, with AUC 0.90, 90% sensitivity and specificity. As recruitment, sample analysis, data collection is ongoing, the most up to date results will be presented. Conclusions NfL shows great promise as a diagnostic test to assist with the common, challenging diagnostic dilemma of distinguishing neurodegenerative from non‐neurodegenerative and primary psychiatric disorders. Plasma p‐tau181 shows strong diagnostic utility in younger‐onset Alzheimer disease. A significantly elevated NfL in someone with a psychiatric diagnosis should prompt consideration of neurodegenerative differentials. Plasma NfL could dramatically alter clinical care of patients with neuropsychiatric and neurological symptoms, improving outcomes for patients, their families, the healthcare system, and clinical trials.
  • Item
    No Preview Available
    Could cerebrospinal fluid neurofilament light chain reduce misdiagnosis in neurodegenerative and neuropsychiatric disorders in a real‐world setting? A retrospective clinical and diagnostic utility study
    Kang, M ; Dobson, H ; Li, Q ; Keem, M ; Loi, SM ; Masters, CL ; Collins, S ; Velakoulis, D ; Eratne, D (Wiley, 2021-12)
    Abstract Background Patients presenting with neuropsychiatric symptoms often face significant diagnostic odyssey. Our recent research (Eratne et al, ANZJP, 2020) found neurofilament light (NfL) differentiated between neurodegenerative and psychiatric disorders, with high accuracy. Yet the clinical utility of NfL, as to whether it can aid clinicians in avoiding misdiagnosis in a real‐world clinical setting, is unknown. Our primary aim was to measure the rates of diagnostic change in patients with neuropsychiatric symptoms assessed at a tertiary multidisciplinary service, and determine whether baseline cerebrospinal (CSF) NfL level could have prevented misdiagnoses, by predicting the final diagnosis after follow up. Methods We conducted a retrospective file review of patients assessed at an Australian neuropsychiatry and young‐onset dementia service between 2009‐2020. NfL levels were measured from CSF collected at their baseline assessment. Blinded investigators (MK, HD, DE) extracted clinical data including diagnoses from discharge summaries and outpatient letters from the initial assessment and re‐assessment. Baseline and final diagnoses were categorised as neurodegenerative disorder [ND], or, other non‐neurodegenerative conditions including primary psychiatric disorder [Other/PPD]. We also obtained follow‐up information on patients that were subsequently seen at external services where available. Results From a preliminary analysis of those with follow‐up information for at least a year (N=32), six patients’ diagnostic categories (19%) were revised (ND to Other/PPD=5; Other/PPD to ND=1). In all six cases (figure 2), baseline CSF NfL levels, using our previously established cut‐off, would have predicted the final revised diagnosis. As this study is underway, findings for over 200 patients will be presented for the Conference. Conclusions In a real‐world tertiary clinical setting, baseline CSF NfL would have accurately predicted diagnostic change, showing promise to aid clinicians assessing patients with neuropsychiatric symptoms, and reduce misdiagnosis. An elevated level could help exclude primary psychiatric provisional or differential diagnoses, and prompt assertive investigations for neurological and neurodegenerative causes. Conversely, a low NfL, could reassure against a neurodegenerative disorder, preventing unnecessary assessments. Timely and accurate diagnosis will reduce uncertainty, enable early care planning, reduce patient and carer burden, thus improving outcomes and the diagnostic odyssey faced by patients and families.
  • Item
    No Preview Available
    Extracellular vesicular lipids as biomarkers for the diagnosis of Alzheimer’s disease
    Su, H ; Rustam, YH ; Masters, CL ; Makalic, E ; McLean, C ; Hill, AF ; Barnham, KJ ; Reid, GE ; Vella, LJ (Wiley, 2021-12-31)
    An increasing number of studies have revealed that dysregulated lipid homeostasis is associated with the pathological processes that lead to Alzheimer’s disease (AD). If changes in key lipid species could be detected in the periphery, it would advance our understanding of the disease and facilitate biomarker discovery. Global lipidomic profiling of sera/blood however has proved challenging with limited disease or tissue specificity. Small extracellular vesicles (EV) in the central nervous system, can pass the blood-brain barrier and enter the periphery, carrying a subset of lipids that could reflect lipid homeostasis in brain. This makes EVs uniquely suited for peripheral biomarker exploration.
  • Item
    No Preview Available
    Empirically derived composite cognitive test scores to predict preclinical and clinical stages of Alzheimer’s disease
    Shishegar, R ; Chai, TY ; Cox, T ; Lamb, F ; Robertson, JS ; Laws, SM ; Porter, T ; Fripp, J ; Doecke, JD ; Tosun‐Turgut, D ; Maruff, PT ; Savage, G ; Rowe, CC ; Masters, CL ; Weiner, MW ; Villemagne, VLL ; Burnham, SC (Wiley, 2021-12)
    Abstract Background Alzheimer’s disease (AD) clinical trials require cognitive test scores that assess change in cognitive function accurately. Here, we propose new composite cognitive test scores to detect earlier stages of AD accurately by using the full neuropsychological testing battery (in ADNI) and a manifold learning dimension reduction technique namely UMAP. Method Data for this study included N=1585 ADNI participants ([492 cognitively normal (CN), 804 mild cognitively impaired (MCI), 289 AD; aged 73.8±7.1; 708 females]; Table 1). Subjects with 3 or more follow‐up sessions were included. Cognitive test scores with more than 60% missing data were excluded. Missing data within included test scores were imputed using the MissForest algorithm. A linear mixed model using all follow‐up data was applied to calculate the random slope (rate of change) and random intercept for each cognitive score and for each subject. The scores and demographic measurements: age, gender, years of education and APOE‐ɛ4 status were used to inform the UMAP. Levels for the output variable were defined as: 1) stable CN, 2) CN who progressed to MCI or probable dementia due to AD, 3) stable MCI, 4) MCI who progressed to dementia AD and 5) dementia due to AD. The model calculated two composite scores. These cognitive stages were predicted using Support Vector Machine (SVM) analysis of both the new composite scores and the traditional clinical rating measures of Clinical Dementia Rating (CDR) and Mini‐Mental State Examination (MMSE). Result Predicting cognitive stages using the proposed composite scores show a highly significant improvement with a 0.981 accuracy and 0.976 reliability (evaluated by Cohen's kappa coefficient), compared to using the combination of CDR and MMSE scores covaried for demographics, which had 0.660 accuracy and 0.567 reliability. Individuals’ clinical and preclinical stages with regards to UMAP two‐dimensional embedding and the clinical rating measures, CDR and MMSE, are presented in Figure 1. Table 2 reports the importance of the test measures on the UMAP components used in AD staging predictions. Conclusion The results here suggest that the proposed empirically derived composite cognitive test scores provides a practical solution to differentiate cognitive stages with a high accuracy and reliability.