Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 1444
  • Item
    Thumbnail Image
    Elevated paternal glucocorticoid exposure modifies memory retention in female offspring
    Yeshurun, S ; Rogers, J ; Short, AK ; Renoir, T ; Pang, TY ; Hannan, AJ (PERGAMON-ELSEVIER SCIENCE LTD, 2017-09-01)
    Recent studies have demonstrated that behavioral traits are subject to transgenerational modification by paternal environmental factors. We previously reported on the transgenerational influences of increased paternal stress hormone levels on offspring anxiety and depression-related behaviors. Here, we investigated whether offspring sociability and cognition are also influenced by paternal stress. Adult C57BL/6J male mice were treated with corticosterone (CORT; 25mg/L) for four weeks prior to paired-matings to generate F1 offspring. Paternal CORT treatment was associated with decreased body weights of female offspring and a marked reduction of the male offspring. There were no differences in social behavior of adult F1 offspring in the three-chamber social interaction test. Despite male offspring of CORT-treated fathers displaying hyperactivity in the Y-maze, there was no observable difference in short-term spatial working memory. Spatial learning and memory testing in the Morris water maze revealed that female, but not male, F1 offspring of CORT-treated fathers had impaired memory retention. We used our recently developed methodology to analyze the spatial search strategy of the mice during the learning trials and determined that the impairment could not be attributed to underlying differences in search strategy. These results provide evidence for the impact of paternal corticosterone administration on offspring cognition and complement the cumulative knowledge of transgenerational epigenetic inheritance of acquired traits in rodents and humans.
  • Item
    Thumbnail Image
    Paternal environmental enrichment transgenerationally alters affective behavioral and neuroendocrine phenotypes
    Yeshurun, S ; Short, AK ; Bredy, TW ; Pang, TY ; Hannan, AJ (PERGAMON-ELSEVIER SCIENCE LTD, 2017-03-01)
    Recent studies have demonstrated that paternal stress in rodents can result in modification of offspring behavior. Environmental enrichment, which enhances cognitive stimulation and physical activity, modifies various behaviors and reduces stress responses in adult rodents. We investigated the transgenerational influence of paternal environmental enrichment on offspring behavior and physiological stress response. Adult C57BL/6J male mice (F0) were exposed to either environmental enrichment or standard housing for four weeks and then pair-mated with naïve females. The F2 generation was generated using F1 male offspring. Male and female F1 and F2 offspring were tested for anxiety using the elevated-plus maze and large open field at 8 weeks of age. Depression-related behavior was assessed using the forced-swim test. Hypothalamic-pituitary-adrenal (HPA) axis function was determined by quantification of serum corticosterone and adrenocorticotropic hormone (ACTH) levels at baseline and after forced-swim stress. Paternal environmental enrichment was associated with increased body weights of male F1 and F2 offspring. There was no significant effect on F1 offspring anxiety and depression-related behaviors. There were no changes in anxiety-related behaviors in the F2 offspring, however these mice displayed a reduced latency to immobility in the forced-swim test. Furthermore, F2 females had significantly higher serum corticosterone levels post-stress, but not ACTH. These results show that paternal environmental enrichment exerts a sex-specific transgenerational impact on the behavioral and physiological response to stress. Our findings have implications for the modelling of psychiatric disorders in rodents.
  • Item
    Thumbnail Image
    The influence of the HPG axis on stress response and depressive-like behaviour in a transgenic mouse model of Huntington's disease
    Du, X ; Pang, TY ; Mo, C ; Renoir, T ; Wright, DJ ; Hannan, AJ (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2015-01-01)
    Huntington's disease (HD) is an autosomal dominant, neurodegenerative disease caused by a CAG tandem repeat mutation encoding a polyglutamine tract expansion in the huntingtin protein. Depression is among the most common affective symptoms in HD but the pathophysiology is unclear. We have previously discovered sexually dimorphic depressive-like behaviours in the R6/1 transgenic mouse model of HD at a pre-motor symptomatic age. Interestingly, only female R6/1 mice display this phenotype. Sexual dimorphism has not been explored in the human HD population despite the well-established knowledge that the clinical depression rate in females is almost twice that of males. Female susceptibility suggests a role of sex hormones, which have been shown to modulate stress response. There is evidence suggesting that the gonads are adversely affected in HD patients, which could alter sex hormone levels. The present study examined the role sex hormones play on stress response in the R6/1 mouse model of HD, in particular, its modulatory effect on the hypothalamic-pituitary-adrenal (HPA) axis and depression-like behaviour. We found that the gonads of female R6/1 mice show atrophy at an early age. Expression levels of gonadotropin-releasing hormone (GnRH) were decreased in the hypothalamus of female HD mice, relative to wild-type female littermates, as were serum testosterone levels. Female serum estradiol levels were not significantly changed. Gonadectomy surgery reduced HPA-axis activity in female mice but had no effect on behavioural phenotypes. Furthermore, expression of the oestrogen receptor (ER) α gene was found to be higher in the adrenal cells of female HD mice. Finally, administration of an ERβ agonist diarylpropionitrile (DPN) rescued depressive-like behaviour in the female HD mice. Our findings provide new insight into the pathogenesis of sexually dimorphic neuroendocrine, physiological and behavioural endophenotypes in HD, and suggest a new avenue for therapeutic intervention.
  • Item
    Thumbnail Image
    Transgenerational paternal transmission of acquired traits: stress-induced modification of the sperm regulatory transcriptome and offspring phenotypes
    Pang, TYC ; Short, AK ; Bredy, TW ; Hannan, AJ (ELSEVIER SCIENCE BV, 2017-04-01)
    In recent years, it has become evident that pre-conceptual exposure of males to various environmental factors induces epigenetic changes in sperm, which can mediate the transmission of acquired traits in their offspring. The most thoroughly examined paternal exposures involve stress and elevated corticosterone, which have been shown to modulate offspring phenotypes in a manner that is relevant to predisposition to brain disorders, and psychiatric illness in particular. Recent seminal studies have demonstrated that key epigenetic information transmitted via the paternal germline involves small non-coding (snc) RNA transcripts such as microRNAs. Following fertilisation, these sncRNAs appear to regulate development so as to modify the phenotype of the offspring. Understanding the mechanisms involved in such transgenerational effects may facilitate future screening of human sperm for 'epigenetic health' and the tailoring of therapeutic interventions according to genetic and epigenetic contributions to illness.
  • Item
    Thumbnail Image
    Novel approaches to alcohol rehabilitation: Modification of stress-responsive brain regions through environmental enrichment
    Pang, TY ; Hannan, AJ ; Lawrence, AJ (PERGAMON-ELSEVIER SCIENCE LTD, 2019-02-01)
    Relapse remains the most prominent hurdle to successful rehabilitation from alcoholism. The neural mechanisms underlying relapse are complex, but our understanding of the brain regions involved, the anatomical circuitry and the modulation of specific nuclei in the context of stress and cue-induced relapse have improved significantly in recent years. In particular, stress is now recognised as a significant trigger for relapse, adding to the well-established impact of chronic stress to escalate alcohol consumption. It is therefore unsurprising that the stress-responsive regions of the brain have also been implicated in alcohol relapse, such as the nucleus accumbens, amygdala and the hypothalamus. Environmental enrichment is a robust experimental paradigm which provides a non-pharmacological tool to alter stress response and, separately, alcohol-seeking behaviour and symptoms of withdrawal. In this review, we examine and consolidate the preclinical evidence that alcohol seeking behaviour and stress-induced relapse are modulated by environmental enrichment, and these are primarily mediated by modification of neural activity within the key nodes of the addiction circuitry. Finally, we discuss the limited clinical evidence that stress-reducing approaches such as mindfulness could potentially serve as adjunctive therapy in the treatment of alcoholism. This article is part of the Special Issue entitled "Neurobiology of Environmental Enrichment".
  • Item
    Thumbnail Image
    HPA axis regulation and stress response is subject to intergenerational modification by paternal trauma and stress
    Batchelor, V ; Pang, TY (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2019-09-01)
    There is increasing evidence that one's risk for psychiatric disturbances and metabolic syndromes is influenced by their parents' own health history, lifestyle and living environment. For example, paternal high fat diet is strongly linked to neuroendocrine dysregulation in offspring and increased risk for diabetes. The potential intergenerational impact of paternal stress has only just begun to emerge, with the initial evidence suggestive of greater risk for anxiety-related disorders. The hypothalamic-pituitary-adrenal (HPA)-axis is a key neuroendocrine signalling system involved in physiological homeostasis and stress response. In individuals, dysregulation of this system is closely associated with behavioral deficits and mood disorders. Various preclinical models of paternal stress have demonstrated robust behavioral shifts but little is known about the intergenerational modification of HPA axis function. This review will present evidence drawn from a range of laboratory mouse and rat models that the intergenerational influence of paternal stress on offspring behavioral phenotypes involve some level of HPA axis dysregulation. It makes the case that further investigations to comprehensively profile HPA axis function in offspring generations is warranted.
  • Item
    Thumbnail Image
    Mutant TDP-43 Deregulates AMPK Activation by PP2A in ALS Models (vol 9, e90449, 2014)
    Perera, ND ; Sheean, RK ; Scott, JW ; Kemp, BE ; Horne, MK (PUBLIC LIBRARY SCIENCE, 2014-04-16)
    Bioenergetic abnormalities and metabolic dysfunction occur in amyotrophic lateral sclerosis (ALS) patients and genetic mouse models. However, whether metabolic dysfunction occurs early in ALS pathophysiology linked to different ALS genes remains unclear. Here, we investigated AMP-activated protein kinase (AMPK) activation, which is a key enzyme induced by energy depletion and metabolic stress, in neuronal cells and mouse models expressing mutant superoxide dismutase 1 (SOD1) or TAR DNA binding protein 43 (TDP-43) linked to ALS. AMPK phosphorylation was sharply increased in spinal cords of transgenic SOD1G93A mice at disease onset and accumulated in cytoplasmic granules in motor neurons, but not in presymptomatic mice. AMPK phosphorylation also occurred in peripheral tissues, liver and kidney, in SOD1G93A mice at disease onset, demonstrating that AMPK activation occurs late and is not restricted to motor neurons. Conversely, AMPK activity was drastically diminished in spinal cords and brains of presymptomatic and symptomatic transgenic TDP-43A315T mice and motor neuronal cells expressing different TDP-43 mutants. We show that mutant TDP-43 induction of the AMPK phosphatase, protein phosphatase 2A (PP2A), is associated with AMPK inactivation in these ALS models. Furthermore, PP2A inhibition by okadaic acid reversed AMPK inactivation by mutant TDP-43 in neuronal cells. Our results suggest that mutant SOD1 and TDP-43 exert contrasting effects on AMPK activation which may reflect key differences in energy metabolism and neurodegeneration in spinal cords of SOD1G93A and TDP-43A315T mice. While AMPK activation in motor neurons correlates with progression in mutant SOD1-mediated disease, AMPK inactivation mediated by PP2A is associated with mutant TDP-43-linked ALS.
  • Item
    Thumbnail Image
    Scavenger Receptor Class A1 Mediates Uptake of Morpholino Antisense Oligonucleotide into Dystrophic Skeletal Muscle.
    Miyatake, S ; Mizobe, Y ; Tsoumpra, MK ; Lim, KRQ ; Hara, Y ; Shabanpoor, F ; Yokota, T ; Takeda, S ; Aoki, Y (Elsevier BV, 2019-03-01)
    Exon skipping using phosphorodiamidate morpholino oligomers (PMOs) is a promising treatment strategy for Duchenne muscular dystrophy (DMD). The most significant limitation of these clinically used compounds is their lack of delivery systems that target muscles; thus, cell-penetrating peptides are being developed to enhance uptake into muscles. Recently, we reported that uptake of peptide-conjugated PMOs into myofibers was mediated by scavenger receptor class A (SR-A), which binds negatively charged ligands. However, the mechanism by which the naked PMOs are taken up into fibers is poorly understood. In this study, we found that PMO uptake and exon-skipping efficiency were promoted in dystrophin-deficient myotubes via endocytosis through a caveolin-dependent pathway. Interestingly, SR-A1 was upregulated and localized in juxtaposition with caveolin-3 in these myotubes and promoted PMO-induced exon skipping. SR-A1 was also upregulated in the skeletal muscle of mdx52 mice and mediated PMO uptake. In addition, PMOs with neutral backbones had negative zeta potentials owing to their nucleobase compositions and interacted with SR-A1. In conclusion, PMOs with negative zeta potential were taken up into dystrophin-deficient skeletal muscle by upregulated SR-A1. Therefore, the development of a drug delivery system targeting SR-A1 could lead to highly efficient exon-skipping therapies for DMD.
  • Item
    Thumbnail Image
    Phase II study of everolimus (RAD001) monotherapy as first-line treatment in advanced biliary tract cancer with biomarker exploration: the RADiChol Study
    Lau, DK ; Tay, RY ; Yeung, YH ; Chionh, F ; Mooi, J ; Murone, C ; Skrinos, E ; Price, TJ ; Mariadason, JM ; Tebbutt, NC (NATURE PUBLISHING GROUP, 2018-04-01)
    BACKGROUND: Advanced biliary tract cancers (BTCs) have a poor prognosis and limited treatment options. This exploratory phase II study aimed to evaluate the activity of the mTOR inhibitor everolimus in advanced BTC and explore prognostic biomarkers. METHODS: Patients with advanced BTCs, who had not received chemotherapy for advanced disease, were enroled to receive everolimus (10 mg daily). The primary endpoint was disease control rate (DCR) at 12 weeks. Secondary endpoints included overall response rate, progression-free survival (PFS), overall survival (OS) and adverse events. Activation status of the RAS and phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathways was assessed by DNA sequencing and immunohistochemistry on archival tumour tissue. RESULTS: The study enroled 27 patients and the DCR at 12 weeks was 48%. Median PFS was 5.5 months (95% confidence interval (CI): 2.1-10.0 months) and median OS was 9.5 months (95% CI: 5.5-16.6 months). DCR at 12 weeks was significantly worse for gall bladder carcinoma compared to other anatomical sites, and there was a trend towards a worsened PFS and OS. Treatment was well tolerated. KRAS (12%) and PIK3CA mutations (12%) were uncommon. Immunohistochemical staining for PI3K/AKT/mTOR pathways did not significantly correlate with outcome. CONCLUSION: In unselected patients, everolimus demonstrated clinical activity as first-line monotherapy in advanced BTC.
  • Item
    Thumbnail Image
    Bimanual Motor Coordination in Older Adults Is Associated with Increased Functional Brain Connectivity - A Graph-Theoretical Analysis
    Heitger, MH ; Goble, DJ ; Dhollander, T ; Dupont, P ; Caeyenberghs, K ; Leemans, A ; Sunaert, S ; Swinnen, SP ; He, Y (PUBLIC LIBRARY SCIENCE, 2013-04-29)
    In bimanual coordination, older and younger adults activate a common cerebral network but the elderly also have additional activation in a secondary network of brain areas to master task performance. It remains unclear whether the functional connectivity within these primary and secondary motor networks differs between the old and the young and whether task difficulty modulates connectivity. We applied graph-theoretical network analysis (GTNA) to task-driven fMRI data in 16 elderly and 16 young participants using a bimanual coordination task including in-phase and anti-phase flexion/extension wrist movements. Network nodes for the GTNA comprised task-relevant brain areas as defined by fMRI activation foci. The elderly matched the motor performance of the young but showed an increased functional connectivity in both networks across a wide range of connectivity metrics, i.e., higher mean connectivity degree, connection strength, network density and efficiency, together with shorter mean communication path length between the network nodes and also a lower betweenness centrality. More difficult movements showed an increased connectivity in both groups. The network connectivity of both groups had "small world" character. The present findings indicate (a) that bimanual coordination in the aging brain is associated with a higher functional connectivity even between areas also activated in young adults, independently from task difficulty, and (b) that adequate motor coordination in the context of task-driven bimanual control in older adults may not be solely due to additional neural recruitment but also to aging-related changes of functional relationships between brain regions.