Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 32
  • Item
    Thumbnail Image
    Aβ Imaging: feasible, pertinent, and vital to progress in Alzheimer's disease
    Villemagne, VL ; Klunk, WE ; Mathis, CA ; Rowe, CC ; Brooks, DJ ; Hyman, BT ; Ikonomovic, MD ; Ishii, K ; Jack, CR ; Jagust, WJ ; Johnson, KA ; Koeppe, RA ; Lowe, VJ ; Masters, CL ; Montine, TJ ; Morris, JC ; Nordberg, A ; Petersen, RC ; Reiman, EM ; Selkoe, DJ ; Sperling, RA ; Van Laere, K ; Weiner, MW ; Drzezga, A (SPRINGER, 2012-02)
  • Item
    No Preview Available
    The pattern of atrophy in familial Alzheimer disease Volumetric MRI results from the DIAN study
    Cash, DM ; Ridgway, GR ; Liang, Y ; Ryan, NS ; Kinnunen, KM ; Yeatman, T ; Malone, IB ; Benzinger, TLS ; Jack, CR ; Thompson, PM ; Ghetti, BF ; Saykin, AJ ; Masters, CL ; Ringman, JM ; Salloway, SP ; Schofield, PR ; Sperling, RA ; Cairns, NJ ; Marcus, DS ; Xiong, C ; Bateman, RJ ; Morris, JC ; Rossor, MN ; Ourselin, S ; Fox, NC (LIPPINCOTT WILLIAMS & WILKINS, 2013-10-15)
    OBJECTIVE: To assess regional patterns of gray and white matter atrophy in familial Alzheimer disease (FAD) mutation carriers. METHODS: A total of 192 participants with volumetric T1-weighted MRI, genotyping, and clinical diagnosis were available from the Dominantly Inherited Alzheimer Network. Of these, 69 were presymptomatic mutation carriers, 50 were symptomatic carriers (31 with Clinical Dementia Rating [CDR] = 0.5, 19 with CDR > 0.5), and 73 were noncarriers from the same families. Voxel-based morphometry was used to identify cross-sectional group differences in gray matter and white matter volume. RESULTS: Significant differences in gray matter (p < 0.05, family-wise error-corrected) were observed between noncarriers and mildly symptomatic (CDR = 0.5) carriers in the thalamus and putamen, as well as in the temporal lobe, precuneus, and cingulate gyrus; the same pattern, but with more extensive changes, was seen in those with CDR > 0.5. Significant white matter differences between noncarriers and symptomatic carriers were observed in the cingulum and fornix; these form input and output connections to the medial temporal lobe, cingulate, and precuneus. No differences between noncarriers and presymptomatic carriers survived correction for multiple comparisons, but there was a trend for decreased gray matter in the thalamus for carriers closer to their estimated age at onset. There were no significant increases of gray or white matter in asymptomatic or symptomatic carriers compared to noncarriers. CONCLUSIONS: Atrophy in FAD is observed early, both in areas commonly associated with sporadic Alzheimer disease and also in the putamen and thalamus, 2 regions associated with early amyloid deposition in FAD mutation carriers.
  • Item
    Thumbnail Image
    The hypoxia imaging agent CuII(atsm) is neuroprotective and improves motor and cognitive functions in multiple animal models of Parkinson's disease
    Hung, LW ; Villemagne, VL ; Cheng, L ; Sherratt, NA ; Ayton, S ; White, AR ; Crouch, PJ ; Lim, S ; Leong, SL ; Wilkins, S ; George, J ; Roberts, BR ; Pham, CLL ; Liu, X ; Chiu, FCK ; Shackleford, DM ; Powell, AK ; Masters, CL ; Bush, AI ; O'Keefe, G ; Culvenor, JG ; Cappai, R ; Cherny, RA ; Donnelly, PS ; Hill, AF ; Finkelstein, DI ; Barnham, KJ (ROCKEFELLER UNIV PRESS, 2012-04-09)
    Parkinson's disease (PD) is a progressive, chronic disease characterized by dyskinesia, rigidity, instability, and tremors. The disease is defined by the presence of Lewy bodies, which primarily consist of aggregated α-synuclein protein, and is accompanied by the loss of monoaminergic neurons. Current therapeutic strategies only give symptomatic relief of motor impairment and do not address the underlying neurodegeneration. Hence, we have identified Cu(II)(atsm) as a potential therapeutic for PD. Drug administration to four different animal models of PD resulted in improved motor and cognition function, rescued nigral cell loss, and improved dopamine metabolism. In vitro, this compound is able to inhibit the effects of peroxynitrite-driven toxicity, including the formation of nitrated α-synuclein oligomers. Our results show that Cu(II)(atsm) is effective in reversing parkinsonian defects in animal models and has the potential to be a successful treatment of PD.
  • Item
    Thumbnail Image
    Influence of BDNF Val66Met on the relationship between physical activity and brain volume
    Brown, BM ; Bourgeat, P ; Peiffer, JJ ; Burnham, S ; Laws, SM ; Rainey-Smith, SR ; Bartres-Faz, D ; Villemagne, VL ; Taddei, K ; Rembach, A ; Bush, A ; Ellis, KA ; Macaulay, SL ; Rowe, CC ; Ames, D ; Masters, CL ; Maruff, P ; Martins, RN (LIPPINCOTT WILLIAMS & WILKINS, 2014-10-07)
    OBJECTIVE: To investigate the association between habitual physical activity levels and brain temporal lobe volumes, and the interaction with the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism. METHODS: This study is a cross-sectional analysis of 114 cognitively healthy men and women aged 60 years and older. Brain volumes quantified by MRI were correlated with self-reported physical activity levels. The effect of the interaction between physical activity and the BDNF Val66Met polymorphism on brain structure volumes was assessed. Post hoc analyses were completed to evaluate the influence of the APOE ε4 allele on any found associations. RESULTS: The BDNF Val66Met polymorphism interacted with physical activity to be associated with hippocampal (β = -0.22, p = 0.02) and temporal lobe (β = -0.28, p = 0.003) volumes. In Val/Val homozygotes, higher levels of physical activity were associated with larger hippocampal and temporal lobe volumes, whereas in Met carriers, higher levels of physical activity were associated with smaller temporal lobe volume. CONCLUSION: The findings from this study support higher physical activity levels in the potential attenuation of age- and disease-related hippocampal and temporal lobe volume loss in Val/Val homozygotes.
  • Item
    Thumbnail Image
    In vivo evaluation of a novel tau imaging tracer for Alzheimer's disease
    Villemagne, VL ; Furumoto, S ; Fodero-Tavoletti, MT ; Mulligan, RS ; Hodges, J ; Harada, R ; Yates, P ; Piguet, O ; Pejoska, S ; Dore, V ; Yanai, K ; Masters, CL ; Kudo, Y ; Rowe, CC ; Okamura, N (SPRINGER, 2014-05)
    PURPOSE: Diagnosis of tauopathies such as Alzheimer's disease (AD) still relies on post-mortem examination of the human brain. A non-invasive method of determining brain tau burden in vivo would allow a better understanding of the pathophysiology of tauopathies. The purpose of the study was to evaluate (18)F-THK523 as a potential tau imaging tracer. METHODS: Ten healthy elderly controls, three semantic dementia (SD) and ten AD patients underwent neuropsychological examination, MRI as well as (18)F-THK523 and (11)C-Pittsburgh compound B (PIB) positron emission tomography (PET) scans. Composite memory and non-memory scores, global and hippocampal brain volume, and partial volume-corrected tissue ratios for (18)F-THK523 and (11)C-PIB were estimated for all participants. Correlational analyses were performed between global and regional (18)F-THK523, (11)C-PIB, cognition and brain volumetrics. RESULTS: (18)F-THK523 presented with fast reversible kinetics. Significantly higher (18)F-THK523 retention was observed in the temporal, parietal, orbitofrontal and hippocampi of AD patients when compared to healthy controls and SD patients. White matter retention was significantly higher than grey matter retention in all participants. The pattern of cortical (18)F-THK523 retention did not correlate with Aβ distribution as assessed by (11)C-PIB and followed the known distribution of tau in the AD brain, being higher in temporal and parietal areas than in the frontal region. Unlike (11)C-PIB, hippocampal (18)F-THK523 retention was correlated with several cognitive parameters and with hippocampal atrophy. CONCLUSION: (18)F-THK523 does not bind to Aβ in vivo, while following the known distribution of paired helical filaments (PHF)-tau in the brain. Significantly higher cortical (18)F-THK523 retention in AD patients as well as the association of hippocampal (18)F-THK523 retention with cognitive parameters and hippocampal volume suggests (18)F-THK523 selectively binds to tau in AD patients. Unfortunately, the very high (18)F-THK523 retention in white matter precludes simple visual inspection of the images, preventing its use in research or clinical settings.
  • Item
    Thumbnail Image
    Variability in Blood-Based Amyloid-β Assays: The Need for Consensus on Pre-Analytical Processing
    Watt, AD ; Perez, KA ; Rembach, AR ; Masters, CL ; Villemagne, VL ; Barnham, KJ (IOS PRESS, 2012)
    Effective therapeutic interventions for Alzheimer's disease (AD) will require treatment regimes to move toward the earliest stages of the disease. For this to occur the field has to identify biomarkers that are able to accurately identify individuals at risk for progression toward AD in the presymptomatic stage. One very significant implication is that some form of population-based screening will need to be undertaken in order to identify those at risk. To date, efforts in neuroimaging brain amyloid-β (Aβ) and changes in cerebrospinal fluid Aβ and tau levels shows promise, however, it is questionable as to whether these methods are applicable for screening the general population. The Aβ peptide is also found in blood which is the most economical and efficient biological fluid to analyze. Unfortunately, investigations into blood-based diagnostic markers have produced mixed results. This variability is likely to be the result of differences in the preanalytical processing of samples and as such is delaying progress in the field. Reported preanalytical processing techniques from 87 recent articles focusing on the measurement of Aβ in blood were compared, to investigate whether basic sample-handling techniques were comparable between studies. This comparison revealed that not only is it likely that some of the variability in blood-based results is attributable to discrepancies in preanalytical methodologies but also that the field is failing to adequately report sample processing techniques. This review highlights the current shortcomings in methodological reporting and recommends a standardized blood collection methodology based on the limited consensus of the reviewed articles.
  • Item
    No Preview Available
    The role of metallobiology and amyloid-ß peptides in Alzheimer's disease
    Roberts, BR ; Ryan, TM ; Bush, AI ; Masters, CL ; Duce, JA (WILEY, 2012-01)
    The biggest risk factor for Alzheimer's disease is the process of ageing, but the mechanisms that lead to the manifestation of the disease remain to be elucidated. Why age triggers the disease is unclear but an emerging theme is the inability for a cell to efficiently maintain many key processes such as energy production, repair, and regenerative mechanisms. Metal ions are essential to the metabolic function of every cell. This review will explore the role and reported changes in metal ions in Alzheimer disease, particularly the brain, blood and cerebral spinal fluid, emphasizing how iron, copper and zinc may be involved through the interactions with amyloid precursor protein, the proteolytically cleaved peptide amyloid-beta (Aβ), and other related metalloproteins. Finally, we explore the monomeric makeup of possible Aβ dimers, what a dimeric Aβ species from Alzheimer's disease brain tissue is likely to be composed of, and discuss how metals may influence Aβ production and toxicity via a copper catalyzed dityrosine cross-link.
  • Item
    Thumbnail Image
    Cerebral microbleeds: review of clinical, genetic, and neuroimaging associations
    Yates, PA ; Villemagne, VL ; Ellis, KA ; Desmond, PM ; Masters, CL ; Rowe, CC (FRONTIERS MEDIA SA, 2014)
    Cerebral microbleeds (microbleeds) are small, punctuate hypointense lesions seen in T2* Gradient-Recall Echo (GRE) and Susceptibility-Weighted (SWI) Magnetic Resonance Imaging (MRI) sequences, corresponding to areas of hemosiderin breakdown products from prior microscopic hemorrhages. They occur in the setting of impaired small vessel integrity, commonly due to either hypertensive vasculopathy or cerebral amyloid angiopathy. Microbleeds are more prevalent in individuals with Alzheimer's disease (AD) dementia and in those with both ischemic and hemorrhagic stroke. However they are also found in asymptomatic individuals, with increasing prevalence with age, particularly in carriers of the Apolipoprotein (APOE) ε4 allele. Other neuroimaging findings that have been linked with microbleeds include lacunar infarcts and white matter hyperintensities on MRI, and increased cerebral β-amyloid burden using (11)C-PiB Positron Emission Tomography. The presence of microbleeds has been suggested to confer increased risk of incident intracerebral hemorrhage - particularly in the setting of anticoagulation - and of complications of immunotherapy for AD. Prospective data regarding the natural history and sequelae of microbleeds are currently limited, however there is a growing evidence base that will serve to inform clinical decision-making in the future.
  • Item
    Thumbnail Image
    Decline in Cognitive Function over 18 Months in Healthy Older Adults with High Amyloid-β
    Ellis, KA ; Lim, YY ; Harrington, K ; Ames, D ; Bush, AI ; Darby, D ; Martins, RN ; Masters, CL ; Rowe, CC ; Savage, G ; Szoeke, C ; Villemagne, VL ; Maruff, P (IOS PRESS, 2013)
    We aimed to characterize the nature and magnitude of cognitive decline in a group of healthy older adults with high and low levels of amyloid-β (Aβ) and who were APOE ε4 carriers and non-carriers. Healthy older adults underwent positron emission tomography neuroimaging for Aβ, APOE genotyping, and cognitive and clinical assessment as part of their baseline assessment in the Australian Imaging, Biomarker, and Lifestyle study. Cognitive function and clinical ratings were reassessed 18 months later. Linear mixed model analyses adjusted for baseline cognitive function indicated that relative to healthy older adults with low Aβ, healthy older adults with high Aβ showed greater decline in episodic memory and language at 18 months. No decline on any measure of executive function, attention, or clinical rating was observed for healthy older adults with high Aβ levels. Compared to non-carriers, APOE ε4 carriers showed a greater decline only on the task of visual memory at the 18 month assessment. Importantly though, no interaction between APOE ε4 and Aβ was observed on any measure of cognitive function. The results of this study suggest that high Aβ load was associated with greater decline in episodic memory and language, that the magnitude of this decline was moderate and equivalent across both domains, and that APOE ε4 carriage did not moderate the relationship between Aβ and decline in memory and language functions.
  • Item
    Thumbnail Image
    A blood-based predictor for neocortical Aβ burden in Alzheimer's disease: results from the AIBL study
    Burnham, SC ; Faux, NG ; Wilson, W ; Laws, SM ; Ames, D ; Bedo, J ; Bush, A ; Doecke, JD ; Ellis, KA ; Head, R ; Jones, G ; Kiiveri, H ; Martins, RN ; Rembach, A ; Rowe, CC ; Salvado, O ; Macaulay, SL ; Masters, CL ; Villemagne, VL (SPRINGERNATURE, 2014-04)
    Dementia is a global epidemic with Alzheimer's disease (AD) being the leading cause. Early identification of patients at risk of developing AD is now becoming an international priority. Neocortical Aβ (extracellular β-amyloid) burden (NAB), as assessed by positron emission tomography (PET), represents one such marker for early identification. These scans are expensive and are not widely available, thus, there is a need for cheaper and more widely accessible alternatives. Addressing this need, a blood biomarker-based signature having efficacy for the prediction of NAB and which can be easily adapted for population screening is described. Blood data (176 analytes measured in plasma) and Pittsburgh Compound B (PiB)-PET measurements from 273 participants from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study were utilised. Univariate analysis was conducted to assess the difference of plasma measures between high and low NAB groups, and cross-validated machine-learning models were generated for predicting NAB. These models were applied to 817 non-imaged AIBL subjects and 82 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) for validation. Five analytes showed significant difference between subjects with high compared to low NAB. A machine-learning model (based on nine markers) achieved sensitivity and specificity of 80 and 82%, respectively, for predicting NAB. Validation using the ADNI cohort yielded similar results (sensitivity 79% and specificity 76%). These results show that a panel of blood-based biomarkers is able to accurately predict NAB, supporting the hypothesis for a relationship between a blood-based signature and Aβ accumulation, therefore, providing a platform for developing a population-based screen.