Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 44
  • Item
    Thumbnail Image
    P2X7 Receptor-mediated Scavenger Activity of Mononuclear Phagocytes toward Non-opsonized Particles and Apoptotic Cells Is Inhibited by Serum Glycoproteins but Remains Active in Cerebrospinal Fluid
    Gu, BJ ; Duce, JA ; Valova, VA ; Wong, B ; Bush, AI ; Petrou, S ; Wiley, JS (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2012-05-18)
    Rapid phagocytosis of non-opsonized particles including apoptotic cells is an important process that involves direct recognition of the target by multiple scavenger receptors including P2X7 on the phagocyte surface. Using a real-time phagocytosis assay, we studied the effect of serum proteins on this phagocytic process. Inclusion of 1-5% serum completely abolished phagocytosis of non-opsonized YG beads by human monocytes. Inhibition was reversed by pretreatment of serum with 1-10 mM tetraethylenepentamine, a copper/zinc chelator. Inhibitory proteins from the serum were determined as negatively charged glycoproteins (pI < 6) with molecular masses between 100 and 300 kDa. A glycoprotein-rich inhibitory fraction of serum not only abolished YG bead uptake but also inhibited phagocytosis of apoptotic lymphocytes or neuronal cells by human monocyte-derived macrophages. Three copper- and/or zinc-containing serum glycoproteins, ceruloplasmin, serum amyloid P-component, and amyloid precursor protein, were identified, and the purified proteins were shown to inhibit the phagocytosis of beads by monocytes as well as phagocytosis of apoptotic neuronal cells by macrophages. Human adult cerebrospinal fluid, which contains very little glycoprotein, had no inhibitory effect on phagocytosis of either beads or apoptotic cells. These data suggest for the first time that metal-interacting glycoproteins present within serum are able to inhibit the scavenger activity of mononuclear phagocytes toward insoluble debris and apoptotic cells.
  • Item
    Thumbnail Image
    The hypoxia imaging agent CuII(atsm) is neuroprotective and improves motor and cognitive functions in multiple animal models of Parkinson's disease
    Hung, LW ; Villemagne, VL ; Cheng, L ; Sherratt, NA ; Ayton, S ; White, AR ; Crouch, PJ ; Lim, S ; Leong, SL ; Wilkins, S ; George, J ; Roberts, BR ; Pham, CLL ; Liu, X ; Chiu, FCK ; Shackleford, DM ; Powell, AK ; Masters, CL ; Bush, AI ; O'Keefe, G ; Culvenor, JG ; Cappai, R ; Cherny, RA ; Donnelly, PS ; Hill, AF ; Finkelstein, DI ; Barnham, KJ (ROCKEFELLER UNIV PRESS, 2012-04-09)
    Parkinson's disease (PD) is a progressive, chronic disease characterized by dyskinesia, rigidity, instability, and tremors. The disease is defined by the presence of Lewy bodies, which primarily consist of aggregated α-synuclein protein, and is accompanied by the loss of monoaminergic neurons. Current therapeutic strategies only give symptomatic relief of motor impairment and do not address the underlying neurodegeneration. Hence, we have identified Cu(II)(atsm) as a potential therapeutic for PD. Drug administration to four different animal models of PD resulted in improved motor and cognition function, rescued nigral cell loss, and improved dopamine metabolism. In vitro, this compound is able to inhibit the effects of peroxynitrite-driven toxicity, including the formation of nitrated α-synuclein oligomers. Our results show that Cu(II)(atsm) is effective in reversing parkinsonian defects in animal models and has the potential to be a successful treatment of PD.
  • Item
    Thumbnail Image
    Metal chaperones: a holistic approach to the treatment of Alzheimer's disease.
    Adlard, PA ; Bush, AI (Frontiers Media, 2012-03-02)
    As evidence for the role of metal ion dysregulation in the pathogenesis of multiple CNS disorders grows, it has become important to more precisely identify and differentiate the biological effects of various pharmacological modulators of metal ion homeostasis. This is particularly evident in disorders such as Alzheimer's disease (AD), where the use of metal chaperones (that transport metals), as opposed to chelators (which exclude metals from biological interactions), may prove to be the first truly disease modifying approach for this condition. The purpose of this mini-review is to highlight the emerging notion that metal chaperones, such as PBT2 (Prana Biotechnology), modulate a variety of critical pathways affecting key aspects of the AD cascade to provide a more "holistic" approach to the treatment of this disease.
  • Item
    Thumbnail Image
    Influence of BDNF Val66Met on the relationship between physical activity and brain volume
    Brown, BM ; Bourgeat, P ; Peiffer, JJ ; Burnham, S ; Laws, SM ; Rainey-Smith, SR ; Bartres-Faz, D ; Villemagne, VL ; Taddei, K ; Rembach, A ; Bush, A ; Ellis, KA ; Macaulay, SL ; Rowe, CC ; Ames, D ; Masters, CL ; Maruff, P ; Martins, RN (LIPPINCOTT WILLIAMS & WILKINS, 2014-10-07)
    OBJECTIVE: To investigate the association between habitual physical activity levels and brain temporal lobe volumes, and the interaction with the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism. METHODS: This study is a cross-sectional analysis of 114 cognitively healthy men and women aged 60 years and older. Brain volumes quantified by MRI were correlated with self-reported physical activity levels. The effect of the interaction between physical activity and the BDNF Val66Met polymorphism on brain structure volumes was assessed. Post hoc analyses were completed to evaluate the influence of the APOE ε4 allele on any found associations. RESULTS: The BDNF Val66Met polymorphism interacted with physical activity to be associated with hippocampal (β = -0.22, p = 0.02) and temporal lobe (β = -0.28, p = 0.003) volumes. In Val/Val homozygotes, higher levels of physical activity were associated with larger hippocampal and temporal lobe volumes, whereas in Met carriers, higher levels of physical activity were associated with smaller temporal lobe volume. CONCLUSION: The findings from this study support higher physical activity levels in the potential attenuation of age- and disease-related hippocampal and temporal lobe volume loss in Val/Val homozygotes.
  • Item
    No Preview Available
    The role of metallobiology and amyloid-ß peptides in Alzheimer's disease
    Roberts, BR ; Ryan, TM ; Bush, AI ; Masters, CL ; Duce, JA (WILEY, 2012-01)
    The biggest risk factor for Alzheimer's disease is the process of ageing, but the mechanisms that lead to the manifestation of the disease remain to be elucidated. Why age triggers the disease is unclear but an emerging theme is the inability for a cell to efficiently maintain many key processes such as energy production, repair, and regenerative mechanisms. Metal ions are essential to the metabolic function of every cell. This review will explore the role and reported changes in metal ions in Alzheimer disease, particularly the brain, blood and cerebral spinal fluid, emphasizing how iron, copper and zinc may be involved through the interactions with amyloid precursor protein, the proteolytically cleaved peptide amyloid-beta (Aβ), and other related metalloproteins. Finally, we explore the monomeric makeup of possible Aβ dimers, what a dimeric Aβ species from Alzheimer's disease brain tissue is likely to be composed of, and discuss how metals may influence Aβ production and toxicity via a copper catalyzed dityrosine cross-link.
  • Item
    Thumbnail Image
    Decline in Cognitive Function over 18 Months in Healthy Older Adults with High Amyloid-β
    Ellis, KA ; Lim, YY ; Harrington, K ; Ames, D ; Bush, AI ; Darby, D ; Martins, RN ; Masters, CL ; Rowe, CC ; Savage, G ; Szoeke, C ; Villemagne, VL ; Maruff, P (IOS PRESS, 2013)
    We aimed to characterize the nature and magnitude of cognitive decline in a group of healthy older adults with high and low levels of amyloid-β (Aβ) and who were APOE ε4 carriers and non-carriers. Healthy older adults underwent positron emission tomography neuroimaging for Aβ, APOE genotyping, and cognitive and clinical assessment as part of their baseline assessment in the Australian Imaging, Biomarker, and Lifestyle study. Cognitive function and clinical ratings were reassessed 18 months later. Linear mixed model analyses adjusted for baseline cognitive function indicated that relative to healthy older adults with low Aβ, healthy older adults with high Aβ showed greater decline in episodic memory and language at 18 months. No decline on any measure of executive function, attention, or clinical rating was observed for healthy older adults with high Aβ levels. Compared to non-carriers, APOE ε4 carriers showed a greater decline only on the task of visual memory at the 18 month assessment. Importantly though, no interaction between APOE ε4 and Aβ was observed on any measure of cognitive function. The results of this study suggest that high Aβ load was associated with greater decline in episodic memory and language, that the magnitude of this decline was moderate and equivalent across both domains, and that APOE ε4 carriage did not moderate the relationship between Aβ and decline in memory and language functions.
  • Item
    Thumbnail Image
    A blood-based predictor for neocortical Aβ burden in Alzheimer's disease: results from the AIBL study
    Burnham, SC ; Faux, NG ; Wilson, W ; Laws, SM ; Ames, D ; Bedo, J ; Bush, A ; Doecke, JD ; Ellis, KA ; Head, R ; Jones, G ; Kiiveri, H ; Martins, RN ; Rembach, A ; Rowe, CC ; Salvado, O ; Macaulay, SL ; Masters, CL ; Villemagne, VL (SPRINGERNATURE, 2014-04)
    Dementia is a global epidemic with Alzheimer's disease (AD) being the leading cause. Early identification of patients at risk of developing AD is now becoming an international priority. Neocortical Aβ (extracellular β-amyloid) burden (NAB), as assessed by positron emission tomography (PET), represents one such marker for early identification. These scans are expensive and are not widely available, thus, there is a need for cheaper and more widely accessible alternatives. Addressing this need, a blood biomarker-based signature having efficacy for the prediction of NAB and which can be easily adapted for population screening is described. Blood data (176 analytes measured in plasma) and Pittsburgh Compound B (PiB)-PET measurements from 273 participants from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study were utilised. Univariate analysis was conducted to assess the difference of plasma measures between high and low NAB groups, and cross-validated machine-learning models were generated for predicting NAB. These models were applied to 817 non-imaged AIBL subjects and 82 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) for validation. Five analytes showed significant difference between subjects with high compared to low NAB. A machine-learning model (based on nine markers) achieved sensitivity and specificity of 80 and 82%, respectively, for predicting NAB. Validation using the ADNI cohort yielded similar results (sensitivity 79% and specificity 76%). These results show that a panel of blood-based biomarkers is able to accurately predict NAB, supporting the hypothesis for a relationship between a blood-based signature and Aβ accumulation, therefore, providing a platform for developing a population-based screen.
  • Item
    No Preview Available
    RESPONSE TO COMMENT ON MOORE ET AL. Increased Risk of Cognitive Impairment in Patients With Diabetes Is Associated With Metformin. Diabetes Care 2013;36:2981-2987
    Moore, EM ; Mander, AG ; Ames, D ; Kotowicz, MA ; Carne, RP ; Brodaty, H ; Woodward, M ; Ellis, KA ; Bush, AI ; Faux, NG ; Watters, DA (AMER DIABETES ASSOC, 2014-06)
  • Item
    Thumbnail Image
    Increased Risk of Cognitive Impairment in Patients With Diabetes Is Associated With Metformin
    Moore, EM ; Mander, AG ; Ames, D ; Kotowicz, MA ; Carne, RP ; Brodaty, H ; Woodward, M ; Boundy, K ; Ellis, KA ; Bush, AI ; Faux, NG ; Martins, R ; Szoeke, C ; Rowe, C ; Watters, DA (AMER DIABETES ASSOC, 2013-10)
    OBJECTIVE: To investigate the associations of metformin, serum vitamin B12, calcium supplements, and cognitive impairment in patients with diabetes. RESEARCH DESIGN AND METHODS: Participants were recruited from the Primary Research in Memory (PRIME) clinics study, the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging, and the Barwon region of southeastern Australia. Patients with Alzheimer disease (AD) (n=480) or mild cognitive impairment (n=187) and those who were cognitively intact (n=687) were included; patients with stroke or with neurodegenerative diseases other than AD were excluded. Subgroup analyses were performed for participants who had either type 2 diabetes (n=104) or impaired glucose tolerance (n=22). RESULTS: Participants with diabetes (n=126) had worse cognitive performance than participants who did not have diabetes (n=1,228; adjusted odds ratio 1.51 [95% CI 1.03-2.21]). Among participants with diabetes, worse cognitive performance was associated with metformin use (2.23 [1.05-4.75]). After adjusting for age, sex, level of education, history of depression, serum vitamin B12, and metformin use, participants with diabetes who were taking calcium supplements had better cognitive performance (0.41 [0.19-0.92]). CONCLUSIONS: Metformin use was associated with impaired cognitive performance. Vitamin B12 and calcium supplements may alleviate metformin-induced vitamin B12 deficiency and were associated with better cognitive outcomes. Prospective trials are warranted to assess the beneficial effects of vitamin B12 and calcium use on cognition in older people with diabetes who are taking metformin.
  • Item
    No Preview Available
    A comparison of ceruloplasmin to biological polyanions in promoting the oxidation of Fe2+ under physiologically relevant conditions
    Wong, BX ; Ayton, S ; Lam, LQ ; Lei, P ; Adlard, PA ; Bush, AI ; Duce, JA (ELSEVIER SCIENCE BV, 2014-12)
    BACKGROUND: Iron oxidation is thought to be predominantly handled enzymatically in the body, to minimize spontaneous combustion with oxygen and to facilitate cellular iron export by loading transferrin. This process may be impaired in disease, and requires more accurate analytical assays to interrogate enzymatic- and auto-oxidation within a physiologically relevant environment. METHOD: A new triplex ferroxidase activity assay has been developed that overcomes the previous assay limitations of measuring iron oxidation at a physiologically relevant pH and salinity. RESULTS: Revised enzymatic kinetics for ceruloplasmin (Vmax≈35μMFe(3+)/min/μM; Km≈15μM) are provided under physiological conditions, and inhibition by sodium azide (Ki for Ferric Gain 78.3μM, Ki for transferrin loading 8.1×10(4)μM) is quantified. We also used this assay to characterize the non-enzymatic oxidation of iron that proceeded linearly under physiological conditions. CONCLUSIONS AND GENERAL SIGNIFICANCE: These findings indicate that the requirement of an enzyme to oxidize iron may only be necessary under conditions of adverse pH or anionic strength, for example from hypoxia. In a normal physiological environment, Fe(3+) incorporation into transferrin would be sufficiently enabled by the biological polyanions that are prevalent within extracellular fluids.