Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 24
  • Item
    Thumbnail Image
    Positive environmental modification of depressive phenotype and abnormal hypothalamic-pituitary-adrenal axis activity in female C57BL/6J mice during abstinence from chronic ethanol consumption
    Pang, TY ; Du, X ; Catchlove, WA ; Renoir, T ; Lawrenceand, AJ ; Hannan, AJ (FRONTIERS MEDIA SA, 2013)
    Depression is a commonly reported co-morbidity during rehabilitation from alcohol use disorders and its presence is associated with an increased likelihood of relapse. Interventions which impede the development of depression could be of potential benefit if incorporated into treatment programs. We previously demonstrated an ameliorative effect of physical exercise on depressive behaviors in a mouse model of alcohol abstinence. Here, we show that environmental enrichment (cognitive and social stimulation) has a similar beneficial effect. The hypothalamic-pituitary-adrenal (HPA) axis is a key physiological system regulating stress responses and its dysregulation has been separably implicated in the pathophysiology of depression and addiction disorders. We performed a series of dexamethasone challenges and found that mice undergoing 2 weeks of alcohol abstinence had significantly greater corticosterone and ACTH levels following a DEX-CRH challenge compared to water controls. Environmental enrichment during alcohol abstinence corrected the abnormal DEX-CRH corticosterone response despite a further elevation of ACTH levels. Examination of gene expression revealed abstinence-associated alterations in glucocorticoid receptor (Gr), corticotrophin releasing hormone (Crh) and pro-opiomelanocortin (Pomc1) mRNA levels which were differentially modulated by environmental enrichment. Overall, our study demonstrates a benefit of environmental enrichment on alcohol abstinence-associated depressive behaviors and HPA axis dysregulation.
  • Item
    Thumbnail Image
    Maternally Administered Sustained-Release Naltrexone in Rats Affects Offspring Neurochemistry and Behaviour in Adulthood
    Farid, WO ; Lawrence, AJ ; Krstew, EV ; Tait, RJ ; Hulse, GK ; Dunlop, SA ; Gilestro, GF (PUBLIC LIBRARY SCIENCE, 2012-12-26)
    Naltrexone is not recommended during pregnancy. However, sustained-release naltrexone implant use in humans has resulted in cases of inadvertent foetal exposure. Here, we used clinically relevant dosing to examine the effects of maternally administered sustained-release naltrexone on the rat brain by examining offspring at birth and in adulthood. Maternal treatment (naltrexone or placebo implant) started before conception and ceased during gestation, birth or weaning. Morphometry was assessed in offspring at birth and adulthood. Adult offspring were evaluated for differences in locomotor behaviour (basal and morphine-induced, 10 mg/kg, s.c.) and opioid neurochemistry, propensity to self-administer morphine and cue-induced drug-seeking after abstinence. Blood analysis confirmed offspring exposure to naltrexone during gestation, birth and weaning. Naltrexone exposure increased litter size and reduced offspring birth-weight but did not alter brain morphometry. Compared to placebo, basal motor activity of naltrexone-exposed adult offspring was lower, yet they showed enhanced development of psychomotor sensitization to morphine. Developmental naltrexone exposure was associated with resistance to morphine-induced down-regulation of striatal preproenkephalin mRNA expression in adulthood. Adult offspring also exhibited greater operant responding for morphine and, in addition, cue-induced drug-seeking was enhanced. Collectively, these data show pronounced effects of developmental naltrexone exposure, some of which persist into adulthood, highlighting the need for follow up of humans that were exposed to naltrexone in utero.
  • Item
    Thumbnail Image
    Neuroplasticity in addiction: cellular and transcriptional perspectives
    Madsen, HB ; Brown, RM ; Lawrence, AJ (FRONTIERS MEDIA SA, 2012)
    Drug addiction is a chronic, relapsing brain disorder which consists of compulsive patterns of drug-seeking and taking that occurs at the expense of other activities. The transition from casual to compulsive drug use and the enduring propensity to relapse is thought to be underpinned by long-lasting neuroadaptations in specific brain circuitry, analogous to those that underlie long-term memory formation. Research spanning the last two decades has made great progress in identifying cellular and molecular mechanisms that contribute to drug-induced changes in plasticity and behavior. Alterations in synaptic transmission within the mesocorticolimbic and corticostriatal pathways, and changes in the transcriptional potential of cells by epigenetic mechanisms are two important means by which drugs of abuse can induce lasting changes in behavior. In this review we provide a summary of more recent research that has furthered our understanding of drug-induced neuroplastic changes both at the level of the synapse, and on a transcriptional level, and how these changes may relate to the human disease of addiction.
  • Item
    Thumbnail Image
    The role of orexins/hypocretins in alcohol use and abuse: an appetitive-reward relationship
    Kim, AK ; Brown, RM ; Lawrence, AJ (FRONTIERS MEDIA SA, 2012-11-22)
    Orexins (hypocretins) are neuropeptides synthesized in neurons located in the lateral (LH), perifornical, and dorsomedial (DMH) hypothalamus. These neurons innervate many regions in the brain and modulate multiple other neurotransmitter systems. As a result of these extensive projections and interactions orexins are involved in numerous functions, such as feeding behavior, neuroendocrine regulation, the sleep-wake cycle, and reward-seeking. This review will summarize the literature to date which has evaluated a role of orexins in the behavioral effects of alcohol, with a focus on understanding the importance of this peptide and its potential as a clinical therapeutic target for alcohol use disorders.
  • Item
    Thumbnail Image
    Exploring the Modulation of Hypoxia-Inducible Factor (HIF)-1α by Volatile Anesthetics as a Possible Mechanism Underlying Volatile Anesthetic-Induced CNS Injury
    Giles, EK ; Lawrence, AJ ; Duncan, JR (SPRINGER/PLENUM PUBLISHERS, 2014-09)
    This review summarizes recent research on the potential cognitive and behavioural abnormalities induced by exposure to volatile anesthetics and suggests a role of hypoxia-inducible factor (HIF)-1α in mediating these events. Volatile anesthetics are widely utilized in clinical and research settings, yet the long-term safety of exposure to these agents is under debate. Findings from various animal models suggest volatile anesthetics induce widespread apoptosis in the central nervous system (CNS) that correlates with lasting deficits in learning and memory. Longitudinal analysis of clinical data highlight an increased risk of developmental disorders later in life when children are exposed to volatile anesthetics, particularly when exposures occur over multiple sessions. However, the mechanisms underlying these events have yet to be established. Considering the extensive use of volatile anesthetics, it is crucial that these events are better understood. The possible role of HIF-1α in volatile anesthetic-induced CNS abnormalities will be suggested and areas requiring urgent attention will be outlined.
  • Item
    No Preview Available
    Investigation of the neuroanatomical substrates of reward seeking following protracted abstinence in mice
    Madsen, HB ; Brown, RM ; Short, JL ; Lawrence, AJ (WILEY-BLACKWELL, 2012-05)
    Persistent vulnerability to relapse represents a major challenge in the treatment of drug addiction. The brain circuitry that underlies relapse-like behaviour can be investigated using animal models of drug seeking. As yet there have been no comprehensive brain mapping studies that have specifically examined the neuroanatomical substrates of cue-induced opiate seeking following abstinence in a mouse operant paradigm. The aim of this study was to compare the brain regions involved in sucrose vs. morphine seeking following protracted abstinence in mice. Male CD1 mice were trained to respond for either sucrose (10% w/v) or intravenous morphine (0.1 mg kg(-1) per infusion) in an operant paradigm in the presence of a discrete cue. Once stable responding was established, mice were subjected to abstinence in their home cages for 3 weeks and then perfused for tissue collection, or returned to the operant chambers to assess cue-induced reward seeking before being perfused for tissue collection. Brain tissue was processed for Fos immunohistochemistry and Fos expression was quantified in a range of brain nuclei. We identified unique patterns of neuronal activation for sucrose and morphine seeking mice as well as some overlap. Structures activated in both ‘relapse' groups included the anterior cingulate and orbitofrontal cortex, nucleus accumbens shell, bed nucleus of the stria terminalis, substantia nigra pars compacta, ventral tegmental area, hippocampus, periaqueductal grey, locus coeruleus and lateral habenula. Structures that were more activated in morphine seeking mice included the nucleus accumbens core, basolateral amygdala, substantia nigra pars reticulata, and the central nucleus of the amygdala. The dorsal raphe was the only structure examined that was specifically activated in sucrose seeking mice. Overall our findings support a cortico-striatal limbic circuit driving opiate seeking, and we have identified some additional circuitry potentially relevant to reward seeking following abstinence.
  • Item
    Thumbnail Image
    An improved method to prepare an injectable microemulsion of the galanin-receptor 3 selective antagonist, SNAP 37889, using Kollipho® HS 15
    Scheller, KJ ; Williams, SJ ; Lawrence, AJ ; Jarrott, B ; Djouma, E (ELSEVIER SCIENCE BV, 2014)
    Research into the galanin-3 (GAL3) receptor has many challenges, including the lack of commercially available selective ligands. While the identification of non-peptidergic GAL3 receptor-selective antagonists, 1-phenyl-3-[3-(trifluoromethyl)phenyl]iminoindol-2-one (SNAP 37889) and 1-[3-(2-pyrrolidin-1-ylethoxy)phenyl]-3-[3-(trifluoromethyl)phenyl]iminoindol-2-one (SNAP 398299) have implicated a role for GAL3 receptors in anxiety, depression and drug-seeking behaviour, a major limitation of their use is poor aqueous solubility. Previously we have used 5% dimethylsulfoxide (DMSO) with 1% hydroxypropylmethyl cellulose in saline to dissolve SNAP 37889 for intraperitoneal (i.p.) injections of rats; however this produced a micro-suspension that was not ideal. The injectable formulation of SNAP 37889 was improved as follows:•30% (w/v) Kolliphor(®) HS 15 (Solutol HS(®) 15) and sodium phosphate buffer (0.01 M, pH 7.4) were used as vehicles.•A smooth glass mortar and pestle was used to triturate the Kolliphor(®) HS 15 and SNAP 37889 into a paste before addition to the sodium phosphate buffer at room temperature (RT).•The resulting mixture was vortexed until the paste was fully dissolved and the microemulsion was allowed to sit for 20 min to allow air bubbles to coalesce.
  • Item
    No Preview Available
    The effect of the mGlu5 negative allosteric modulator MTEP and NMDA receptor partial agonist D-cycloserine on Pavlovian conditioned fear
    Handford, CE ; Tan, S ; Lawrence, AJ ; Kim, JH (OXFORD UNIV PRESS, 2014-09)
    The metabotropic glutamate receptor 5 (mGlu5) and N-methyl-D-aspartate (NMDA) receptor are critical for processes underlying synaptic plasticity, such as long-term potentiation. mGlu5 signaling increases neuronal excitability and potentiates NMDA receptor currents in the amygdala and the hippocampus. The present study examined the involvement of mGlu5 in the acquisition and consolidation of conditioned fear to a tone and context in mice, and explored the functional relationship between mGlu5 and NMDA receptors in this regard. Experiment 1 showed that systemic administration of the mGlu5 negative allosteric modulator 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) prior to conditioning significantly attenuated cue-elicited freezing during fear conditioning, which suggests that mGlu5 is necessary for the formation of a tone-shock association. This effect was dose-related (Experiment 2) and not due to any effects of MTEP on shock sensitivity or state-dependency (Experiment 3). Post-conditioning injection of MTEP had no effects (Experiment 4). Although post-conditioning injection of the NMDA receptor partial agonist D-cycloserine (DCS) alone facilitated consolidation of conditioned fear (Experiment 6), it was not able to rescue the acquisition deficit caused by MTEP (Experiment 5). Taken together, these findings indicate a crucial role for mGlu5 signaling in acquisition and NMDA receptor signaling in consolidation of conditioned fear.
  • Item
    Thumbnail Image
    Knockdown of CRF1 Receptors in the Ventral Tegmental Area Attenuates Cue- and Acute Food Deprivation Stress-Induced Cocaine Seeking in Mice
    Chen, NA ; Jupp, B ; Sztainberg, Y ; Lebow, M ; Brown, RM ; Kim, JH ; Chen, A ; Lawrence, AJ (SOC NEUROSCIENCE, 2014-08-27)
    Corticotrophin-releasing factor (CRF) modulates the influence of stress on cocaine reward and reward seeking acting at multiple sites, including the ventral tegmental area (VTA). There is controversy, however, concerning the contribution of CRF receptor type 1 (CRFR1) to this effect and whether CRF within the VTA is involved in other aspects of reward seeking independent of acute stress. Here we examine the role of CRFR1 within the VTA in relation to cocaine and natural reward using viral delivery of short hairpin RNAs (lenti-shCRFR1) and investigate the effect on operant self-administration and motivation to self-administer, as well as stress- and cue-induced reward seeking in mice. While knockdown of CRFR1 in the VTA had no effect on self-administration behavior for either cocaine or sucrose, it effectively blocked acute food deprivation stress-induced reinstatement of cocaine seeking. We also observed reduced cue-induced cocaine seeking assessed in a single extinction session after extended abstinence, but cue-induced sucrose seeking was unaffected, suggesting dissociation between the contribution of CRFR1 in the VTA in cocaine reward and sucrose and cocaine seeking. Further, our data indicate a role for VTA CRFR1 signaling in cocaine seeking associated with, and independent of, stress potentially involving conditioning and/or salience attribution of cocaine reward-related cues. CRFR1 signaling in the VTA therefore presents a target for convergent effects of both cue- and stress-induced cocaine-seeking pathways.
  • Item
    Thumbnail Image
    Netrin-1 receptor-deficient mice show age-specific impairment in drug-induced locomotor hyperactivity but still self-administer methamphetamine
    Kim, JH ; Lavan, D ; Chen, N ; Flores, C ; Cooper, H ; Lawrence, AJ (SPRINGER, 2013-12)
    RATIONALE: The mesocorticolimbic dopamine system undergoes significant reorganization of neuronal connectivity and functional refinement during adolescence. Deleted in colorectal cancer (DCC), a receptor for the guidance cue netrin-1, is involved in this reorganization. Previous studies have shown that adult mice with a heterozygous (het) loss-of-function mutation in DCC exhibit impairments in sensitization and conditioned place preference (CPP) to psychostimulants. However, the commonly abused psychostimulant methamphetamine (METH) has not been assessed, and the role of DCC in drug self-administration remains to be established. OBJECTIVES: Using dcc het mice and wildtype (WT) littermates, we extended previous findings on dcc haplodeficiency by examining self-administration of METH in adult mice, including cue-induced drug seeking following abstinence. We also examined hyperactivity, sensitization, and CPP to a METH-paired context in adult and adolescent mice. RESULTS: While adult dcc het mice expressed largely similar METH self-administration and cue-induced drug seeking as WT littermates, they failed to modulate responding according to dose of METH. Compared to WT, both adult and adolescent dcc het mice expressed impaired locomotor hyperactivity to acute METH but nevertheless showed comparable behavioral sensitization. Conditioned hyperactivity increased with age in WT but not in dcc het mice. CONCLUSIONS: Impaired METH-induced hyperactivity and dose-related responding in adult dcc het mice suggest that reduced DCC alters METH-related behaviors. Adolescence is identified as a vulnerable period during which impairment in hyperactivity due to reduced DCC can be overcome with repeated METH injections. Nevertheless, DCC appears to have a somewhat limited role in METH-consumption and seeking following abstinence.