Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Redox active metals in neurodegenerative diseases
    Acevedo, K ; Masaldan, S ; Opazo, CM ; Bush, AI (SPRINGER, 2019-12)
    Copper (Cu) and iron (Fe) are redox active metals essential for the regulation of cellular pathways that are fundamental for brain function, including neurotransmitter synthesis and release, neurotransmission, and protein turnover. Cu and Fe are tightly regulated by sophisticated homeostatic systems that tune the levels and localization of these redox active metals. The regulation of Cu and Fe necessitates their coordination to small organic molecules and metal chaperone proteins that restrict their reactions to specific protein centres, where Cu and Fe cycle between reduced (Fe2+, Cu+) and oxidised states (Fe3+, Cu2+). Perturbation of this regulation is evident in the brain affected by neurodegeneration. Here we review the evidence that links Cu and Fe dyshomeostasis to neurodegeneration as well as the promising preclinical and clinical studies reporting pharmacological intervention to remedy Cu and Fe abnormalities in the treatment of Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS).
  • Item
    Thumbnail Image
    Striking while the iron is hot: Iron metabolism and ferroptosis in neurodegeneration
    Masaldan, S ; Bush, AI ; Devos, D ; Rolland, AS ; Moreau, C (ELSEVIER SCIENCE INC, 2019-03)
    Perturbations in iron homeostasis and iron accumulation feature in several neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS). Proteins such as α-synuclein, tau and amyloid precursor protein that are pathologically associated with neurodegeneration are involved in molecular crosstalk with iron homeostatic proteins. Quantitative susceptibility mapping, an MRI based non-invasive technique, offers proximal evaluations of iron load in regions of the brain and powerfully predicts cognitive decline. Further, small molecules that target elevated iron have shown promise against PD and AD in preclinical studies and clinical trials. Despite these strong links between altered iron homeostasis and neurodegeneration the molecular biology to describe the association between enhanced iron levels and neuron death, synaptic impairment and cognitive decline is ill defined. In this review we discuss the current understanding of brain iron homeostasis and how it may be perturbed under pathological conditions. Further, we explore the ramifications of a novel cell death pathway called ferroptosis that has provided a fresh impetus to the "metal hypothesis" of neurodegeneration. While lipid peroxidation plays a central role in the execution of this cell death modality the removal of iron through chelation or genetic modifications appears to extinguish the ferroptotic pathway. Conversely, tissues that harbour elevated iron may be predisposed to ferroptotic damage. These emerging findings are of relevance to neurodegeneration where ferroptotic signalling may offer new targets to mitigate cell death and dysfunction.
  • Item
    Thumbnail Image
    Cellular Senescence and Iron Dyshomeostasis in Alzheimer's Disease
    Masaldan, S ; Belaidi, AA ; Ayton, S ; Bush, A (MDPI, 2019-06)
    Iron dyshomeostasis is a feature of Alzheimer's disease (AD). The impact of iron on AD is attributed to its interactions with the central proteins of AD pathology (amyloid precursor protein and tau) and/or through the iron-mediated generation of prooxidant molecules (e.g., hydroxyl radicals). However, the source of iron accumulation in pathologically relevant regions of the brain and its contribution to AD remains unclear. One likely contributor to iron accumulation is the age-associated increase in tissue-resident senescent cells that drive inflammation and contribute to various pathologies associated with advanced age. Iron accumulation predisposes ageing tissue to oxidative stress that can lead to cellular dysfunction and to iron-dependent cell death modalities (e.g., ferroptosis). Further, elevated brain iron is associated with the progression of AD and cognitive decline. Elevated brain iron presents a feature of AD that may be modified pharmacologically to mitigate the effects of age/senescence-associated iron dyshomeostasis and improve disease outcome.