Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    The Compound ATH434 Prevents Alpha-Synuclein Toxicity in a Murine Model of Multiple System Atrophy
    Finkelstein, D ; Shukla, JJ ; Cherny, RA ; Billings, JL ; Saleh, E ; Stefanova, N ; Barnham, KJ ; Adlard, PA (IOS PRESS, 2022)
    BACKGROUND: An elevation in iron levels, together with an accumulation of α-synuclein within the oligodendrocytes, are features of the rare atypical parkinsonian disorder, Multiple System Atrophy (MSA). We have previously tested the novel compound ATH434 (formally called PBT434) in preclinical models of Parkinson's disease and shown that it is brain-penetrant, reduces iron accumulation and iron-mediated redox activity, provides neuroprotection, inhibits alpha synuclein aggregation and lowers the tissue levels of alpha synuclein. The compound was also well-tolerated in a first-in-human oral dosing study in healthy and older volunteers with a favorable, dose-dependent pharmacokinetic profile. OBJECTIVE: To evaluate the efficacy of ATH434 in a mouse MSA model. METHODS: The PLP-α-syn transgenic mouse overexpresses α-synuclein, demonstrates oligodendroglial pathology, and manifests motor and non-motor aspects of MSA. Animals were provided ATH434 (3, 10, or 30 mg/kg/day spiked into their food) or control food for 4 months starting at 12 months of age and were culled at 16 months. Western blot was used to assess oligomeric and urea soluble α-synuclein levels in brain homogenates, whilst stereology was used to quantitate the number of nigral neurons and glial cell inclusions (GCIs) present in the substantia nigra pars compacta. RESULTS: ATH434 reduced oligomeric and urea soluble α-synuclein aggregation, reduced the number of GCIs, and preserved SNpc neurons. In vitro experiments suggest that ATH434 prevents the formation of toxic oligomeric "species of synuclein". CONCLUSION: ATH434 is a promising small molecule drug candidate that has potential to move forward to trial for treating MSA.
  • Item
    Thumbnail Image
    ATH434 Reverses Colorectal Dysfunction in the A53T Mouse Model of Parkinson's Disease
    Diwakarla, S ; McQuade, RM ; Constable, R ; Artaiz, O ; Lei, E ; Barnham, KJ ; Adlard, PA ; Cherny, RA ; Di Natale, MR ; Wu, H ; Chai, X-Y ; Lawson, VA ; Finkelstein, D ; Furness, JB (IOS PRESS, 2021)
    BACKGROUND: Gastrointestinal (GI) complications, that severely impact patient quality of life, are a common occurrence in patients with Parkinson's disease (PD). Damage to enteric neurons and the accumulation of alpha-synuclein in the enteric nervous system (ENS) are thought to contribute to this phenotype. Copper or iron chelators, that bind excess or labile metal ions, can prevent aggregation of alpha-synuclein in the brain and alleviate motor-symptoms in preclinical models of PD. OBJECTIVE: We investigated the effect of ATH434 (formally PBT434), a small molecule, orally bioavailable, moderate-affinity iron chelator, on colonic propulsion and whole gut transit in A53T alpha-synuclein transgenic mice. METHODS: Mice were fed ATH434 (30 mg/kg/day) for either 4 months (beginning at ∼15 months of age), after the onset of slowed propulsion ("treatment group"), or for 3 months (beginning at ∼12 months of age), prior to slowed propulsion ("prevention group"). RESULTS: ATH434, given after dysfunction was established, resulted in a reversal of slowed colonic propulsion and gut transit deficits in A53T mice to WT levels. In addition, ATH434 administered from 12 months prevented the slowed bead expulsion at 15 months but did not alter deficits in gut transit time when compared to vehicle-treated A53T mice. The proportion of neurons with nuclear Hu+ translocation, an indicator of neuronal stress in the ENS, was significantly greater in A53T than WT mice, and was reduced in both groups when ATH434 was administered. CONCLUSION: ATH434 can reverse some of the GI deficits and enteric neuropathy that occur in a mouse model of PD, and thus may have potential clinical benefit in alleviating the GI dysfunctions associated with PD.
  • Item
    Thumbnail Image
    The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson's disease (vol 5, 53, 2017)
    Finkelstein, DI ; Billings, JL ; Adlard, PA ; Ayton, S ; Sedjahtera, A ; Masters, CL ; Wilkins, S ; Shackleford, DM ; Charman, SA ; Bal, W ; Zawisza, IA ; Kurowska, E ; Gundlach, AL ; Ma, S ; Bush, AI ; Hare, DJ ; Doble, PA ; Crawford, S ; Gautier, ECL ; Parsons, J ; Huggins, P ; Barnham, KJ ; Cherny, RA (BMC, 2021-09-29)