Florey Department of Neuroscience and Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Decreased cortical muscarinic M1 receptors in schizophrenia are associated with changes in gene promoter methylation, mRNA and gene targeting microRNA
    Scarr, E ; Craig, JM ; Cairns, MJ ; Seo, MS ; Galati, JC ; Beveridge, NJ ; Gibbons, A ; Juzva, S ; Weinrich, B ; Parkinson-Bates, M ; Carroll, AP ; Saffery, R ; Dean, B (NATURE PUBLISHING GROUP, 2013-02)
    Many studies have shown decreased cortical muscarinic M1 receptors (CHRM1) in schizophrenia (Sz), with one study showing Sz can be separated into two populations based on a marked loss of CHRM1 (-75%) in -25% of people (Def-Sz) with the disorder. To better understand the mechanism contributing to the loss of CHRM1 in Def-Sz, we measured specific markers of gene expression in the cortex of people with Sz as a whole, people differentiated into Def-Sz and people with Sz that do not have a deficit in cortical CHRM1 (Non-Def-Sz) and health controls. We now report that cortical CHRM1 gene promoter methylation and CHRM1 mRNA are decrease in Sz, Def-Sz and Non-Def-Sz but levels of the micro RNA (miR)-107, a CHRM1 targeting miR, are increased only in Def-Sz. We also report in vitro data strongly supporting the notion that miR-107 levels regulate CHRM1 expression. These data suggest there is a reversal of the expected inverse relationship between gene promoter methylation and CHRM1 mRNA in people with Sz and that a breakdown in gene promoter methylation control of CHRM1 expression is contributing to the global pathophysiology of the syndrome. In addition, our data argues that increased levels of at least one miR, miR-107, is contributing to the marked loss of cortical CHRM1 in Def-Sz and this may be a differentiating pathophysiology. These latter data continue to support the hypothesis that microRNAs (miRNA) have a role in the underlying neurobiology of Sz but argue they are differentially affected in subsets of people within that syndrome.
  • Item
    Thumbnail Image
    Clozapine induction of ERK1/2 cell signalling via the EGF receptor in mouse prefrontal cortex and striatum is distinct from other antipsychotic drugs
    Pereira, A ; Sugiharto-Winarno, A ; Zhang, B ; Malcolm, P ; Fink, G ; Sundram, S (CAMBRIDGE UNIV PRESS, 2012-09)
    Treatment resistance remains a major obstacle in schizophrenia, with antipsychotic drugs (APDs) being ineffective in about one third of cases. Poor response to standard therapy leaves the APD clozapine as the only effective treatment for many patients. The reason for the superior efficacy of clozapine is unknown, but as we have proposed previously it may involve modulation of neuroplasticity and connectivity through induction of interconnected mitogenic signalling pathways. These include the mitogen-activated protein kinase-extracellular signal regulated kinase (MAPK-ERK) cascade and epidermal growth factor (EGF)/ErbB systems. Clozapine, distinct from other APDs, induced initial inhibition and subsequent activation of the ERK response in prefrontal cortical (PFC) neurons in vitro and in vivo, an action mediated by the EGF receptor (ErbB1). Here we examine additionally the striatum of C57Bl/6 mice to determine if clozapine, olanzapine, and haloperidol differentially regulate the ERK1/2 pathway in a region or time-specific manner conditional on the EGF receptor. Following acute treatment, only clozapine caused delayed striatal ERK phosphorylation through EGF receptor phosphorylation (tyrosine 1068 site) and MEK that paralleled cortical ERK phosphorylation. Olanzapine induced initial pERK1-specific blockade and an elevation 24-h later in PFC but had no effect in the striatum. By contrast, haloperidol significantly stimulated pERK1 in striatum for up to 8 h, but exerted limited effect in PFC. Clozapine but not olanzapine or haloperidol recruited the EGF receptor to signal to ERK. These in-vivo data reinforce our previous findings that clozapine's action may be uniquely linked to the EGF signalling system, potentially contributing to its distinctive clinical profile.
  • Item
    Thumbnail Image
    BDNF deficiency and young-adult methamphetamine induce sex-specific effects on prepulse inhibition regulation
    Manning, EE ; van den Buuse, M (FRONTIERS RESEARCH FOUNDATION, 2013-06-12)
    Brain-derived neurotrophic factor (BDNF) has been implicated in the pathophysiology of schizophrenia, yet its role in the development of specific symptoms is unclear. Methamphetamine (METH) users have an increased risk of psychosis and schizophrenia, and METH-treated animals have been used extensively as a model to study the positive symptoms of schizophrenia. We investigated whether METH treatment in BDNF heterozygous (HET) mutant mice has cumulative effects on sensorimotor gating, including the disruptive effects of psychotropic drugs. BDNF HETs and wildtype (WT) littermates were treated during young adulthood with METH and, following a 2-week break, prepulse inhibition (PPI) was examined. At baseline, BDNF HETs showed reduced PPI compared to WT mice irrespective of METH pre-treatment. An acute challenge with amphetamine (AMPH) disrupted PPI but male BDNF HETs were more sensitive to this effect, irrespective of METH pre-treatment. In contrast, female mice treated with METH were less sensitive to the disruptive effects of AMPH, and there were no effects of BDNF genotype. Similar changes were not observed in the response to an acute apomorphine (APO) or MK-801 challenge. These results show that genetically-induced reduction of BDNF caused changes in a behavioral endophenotype relevant to the positive symptoms of schizophrenia. However, major sex differences were observed in the effects of a psychotropic drug challenge on this behavior. These findings suggest sex differences in the effects of BDNF depletion and METH treatment on the monoamine signaling pathways that regulate PPI. Given that these same pathways are thought to contribute to the expression of positive symptoms in schizophrenia, this work suggests that there may be significant sex differences in the pathophysiology underlying these symptoms. Elucidating these sex differences may be important for our understanding of the neurobiology of schizophrenia and developing better treatments strategies for the disorder.