Surgery (Austin & Northern Health) - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Exploring Treatments to Inhibit tumour recurrence Following Resection of Colorectal Liver Metastases
    Kastrappis, Georgios Loizou ( 2021)
    Background: Colorectal cancer (CRC) accounts for 9.2% of all cancer related deaths making it the second most common cause of cancer related death worldwide. The majority of CRC deaths are attributed to metastases, with liver being the most common metastatic site. Currently the best available treatment for colorectal liver metastasis (CRLM) that offers high survival rates and a potential for cure is liver resection surgery. However, only a small fraction of CRLM patients are eligible for surgery. Furthermore, liver resection and the ensuing liver regeneration (LR) upregulate growth factors and cytokines leading to a pro-inflammatory response, creating a favourable environment for any dormant tumours to grow. Thus, liver resected patients experience high tumour recurrence rates. Anti-inflammatory treatments administered perioperatively may reduce tumour recurrence. Previous experimental studies have shown that inhibition of the Renin Angiotensin System (RAS) classical pathway reduces tumour growth and accelerates liver regeneration together with a reduction in inflammation. This study investigates mechanisms by which captopril a RAS inhibitor (RASi) influences the environment of a regenerating liver to reduce inflammation. Additionally, it investigates the potential of a VEGFR-3 specific inhibitor, SAR131675, to inhibit tumour growth and reduce inflammation. Aims: 1) To investigate the effects Captopril, an angiotensin I converting enzyme (ACE) inhibitor, has on pro-inflammatory cytokines during LR. 2) To investigate the effect Captopril has on the global proteome and phosphoproteome of the liver during the early stages of LR 3) To investigate the effect SAR131675, a VEGFR-3 tyrosine kinase inhibitor, has on liver metastases in a CRLM mouse model and determine the likely mechanisms. Methods: Male CBA mice were used for all experiments in this study. For the liver regeneration study a 70% partial hepatectomy mouse model was used. Captopril (750mg/kg) was administered intraperitoneally and given daily starting 4 days before surgery until the endpoint (1 hour, 3 hours, 4 hours, 1 day and 2 days). Serum cytokine (IL-2, IL-6, IL-10, IL-12p70, IL-17A, TNF, IFNgamma and MCP-1) levels were assessed at the 1, 3 and 4 hour timepoints while liver regeneration was assessed at the day 1 and 2 timepoints, by measuring liver to body weight ratio and the liver regeneration rate. In addition, the 4 hour timepoint was used to conduct global proteomic and phosphoproteomic analyses. To investigate the effects SAR131675 had on CRLM and the mechanisms involved a mouse model of CRLM was used where metastases were established via intrasplenic injection of tumour cells. Immunohistochemistry was used for the analysis of proliferation, apoptosis, lymphatic and blood vessel densities, macrophage and T-cell tumour infiltration. Furthermore, FACS analysis was used to investigate changes in immune lymphoid and myeloid cell populations due to SAR131675 treatment. Results: Captopril treatment significantly reduced IL-6 levels in the serum of mice in the early phase of liver regeneration. This result was reinforced by the results of the global proteomic and phospho-proteomic study indicating that Captopril induced changes in a great number of proteins involved in inflammatory pathways in almost every cell process including cell proliferation, apoptosis transcription, translation and stress response. Interestingly, the largest proportion of protein changes were associated with lipid metabolism which is also closely associated with inflammatory pathways. SAR131675 treatment significantly reduced tumour growth in the mouse model of liver metastases. Mechanistically SAR131675 treatment changed the tumour microenvironment and promoted anti-tumour immune responses by modulating the tumour infiltrating immune cell composition; increasing the ratio of T lymphocytes to monocytes and by modifying the T-cell and myeloid cell subtype and activation to that favouring an anti-tumour immune response. Conclusion: Both Captopril and SAR131675 were able to modulate inflammatory pathways creating a microenvironment that is inhibitory towards tumour growth. These treatments have potential to be used in order to reduce tumour recurrence in patients that have undergone liver resection surgery.
  • Item
    Thumbnail Image
    Reprogramming tumour immune microenvironment of colorectal liver metastases with renin-angiotensin inhibitors
    Vallejo Ardila, Dora Lucia ( 2021)
    Background Renin-angiotensin system inhibitors (RASi) have shown anti-tumour effects that may significantly impact the response to current cancer immunotherapies and the prognosis in patients with colorectal liver metastases (CLM). RAS components are expressed by various immune cells and adult hematopoietic cells. The mechanisms by which RASi reprogram the tumour immune microenvironment toward an immunostimulatory milieu involves modulating the function of immune T lymphocytes, myeloid cells and cancer-associated fibroblasts. Experimental Design Liver metastases were established in a mouse model using an autologous colorectal cancer cell line. RASi captopril 750mg/kg or saline was administered to the mice daily via intraperitoneal injection, from day one post-tumour induction to the endpoint, day 15 or 21 post tumour induction. At the endpoint, tumour growth was determined, and lymphocyte and myeloid-derived infiltration and composition in the tumour and liver tissues were analyzed by flow cytometry and immunohistochemistry. At endpoint day 15, livers and tumour tissues were collected, and tissue lysates were prepared and analyzed using liquid chromatography-tandem mass spectrometry proteomic techniques to determine relative changes in protein abundance. The proteomics results were analyzed using open-source software such as MaxQuant and Perseus. A 7-plex OPAL protocol was used to assess the composition and spatial distribution of T cell markers CD3, CD8, FoxP3 and CD103 and the epithelial to mesenchymal transition markers alpha- Smooth muscle actin and E-cadherin. The protocol was manually optimized and validated in two independent cohorts of formalin-fixed, paraffin-embedded CLM patient tissues using well-established antibodies, a single spectral library, negative controls, and biological controls corroborating the staining pattern of immune infiltrates. Results Captopril significantly decreased tumour viability and impaired metastatic growth, increased the infiltration of CD3 T cells into both tissues, and the primary contributing phenotype to this influx is a CD4 and CD8 double-negative T cell subtype, while CD4 T cells decreased and CD8 T cells remained unchanged. Furthermore, clustering and functional enrichment showed that captopril modulates the expression of some of the immunoproteasome subunits, including PSMB8, PSMB10, PSMB5 and PSME1. Also, T lymphocyte phenotypes’ spatial distribution was seen in significantly higher levels in the invasive tumour margin compared to their density within the liver parenchyma or the tumour centre in human CLM. Thus, high CD3 density in the tumour core or high CD8 density in the invasive tumour margin predicts a significantly better overall survival. Moreover, high CD3 T cell density at the adjacent liver parenchyma and a high CD8 density at the tumour core segment influenced patient survival after CLM resection in patients who received RASi antihypertensive medication. In the case of myeloid cells, a significant decline in myeloid cells expressing CD31pos was induced by captopril, while the relative proportion of CD31neg cells was preserved when comparing between the liver and the tumour. RASi significantly reduces a CD31pos monocyte-derived subset F480neg Ly6C intermediate and High, which may have a pro-angiogenic and immunosuppressive function. Conclusion The work of this thesis highlights the mechanism by which RAS inhibitors decreased tumour viability and impaired metastatic growth by effectively restoring the immunogenicity of CLM toward an immunostimulatory milieu.