Ophthalmology (Eye & Ear Hospital) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    Targeted delivery of LM22A-4 by cubosomes protects retinal ganglion cells in an experimental glaucoma model
    Ding, Y ; Chow, SH ; Chen, J ; Le Brun, AP ; Wu, C-M ; Duff, AP ; Wang, Y ; Song, J ; Wang, J-H ; Wong, VHY ; Zhao, D ; Nishimura, T ; Lee, T-H ; Conn, CE ; Hsu, H-Y ; Bui, B ; Liu, G-S ; Shen, H-H (ELSEVIER SCI LTD, 2021-05)
    Glaucoma, a major cause of irreversible blindness worldwide, is associated with elevated intraocular pressure (IOP) and progressive loss of retinal ganglion cells (RGCs) that undergo apoptosis. A mechanism for RGCs injury involves impairment of neurotrophic support and exogenous supply of neurotrophic factors has been shown to be beneficial. However, neurotrophic factors can have widespread effects on neuronal tissues, thus targeting neurotrophic support to injured neurons may be a better neuroprotective strategy. In this study, we have encapsulated LM22A-4, a small neurotrophic factor mimetic, into Annexin V-conjugated cubosomes (L4-ACs) for targeted delivery to injured RGCs in a model of acute IOP elevation, which is induced by acute IOP elevation. We have tested cubosomes formulations that encapsulate from 9% to 33% LM22A-4. Our data indicated that cubosomes encapsulating 9% and 17% LM22A-4 exhibited a mixture of Pn3m/Im3m cubic phase, whereas 23% and 33% showed a pure Im3m cubic phase. We found that 17% L4-ACs with Pn3m/Im3m symmetries showed better in-situ and in-vitro lipid membrane interactions than the 23% and 33% L4-ACs with Im3m symmetry. In vivo experiments showed that 17% L4-ACs targeted the posterior retina and the optic nerve head, which prevented RGCs loss and improved functional outcomes in a mouse model of acute IOP elevation. These results provide evidence that Annexin V-conjugated cubosomes-based LM22A-4 delivery may be a useful targeted approach to prevent the progression of RGCs loss in glaucoma. STATEMENT OF SIGNIFICANCE: Recent studies suggest that the therapy of effectively delivering neurotrophic factors to the injured retinal ganglion cells (RGCs) could promote the survival of RGCs in glaucoma. Our present work has for the first time used cubosomes as an active targeted delivery system and have successfully delivered a neuroprotective drug to the damaged RGCs in vivo. Our new cubosomal formulation can protect apoptotic cell death in vitro and in vivo, showing that cubosomes are a promising drug carrier system for ocular drug delivery and glaucoma treatment. We have further found that by controlling cubosomes in Pn3m phase we can facilitate delivery of neuroprotective drug through apoptotic membranes. This data, we believe, has important implications for future design and formulation of cubosomes for therapeutic applications.
  • Item
    Thumbnail Image
    Effect of hydroxychloroquine or chloroquine and short wavelength light on in vivo retinal function and structure in mouse eyes
    Heriot, W ; Wong, VHY ; He, Z ; Anh, H ; Lim, JKH ; Nishimura, T ; Zhao, D ; Metha, AB ; Bui, B (TAYLOR & FRANCIS LTD, 2023-07-04)
    CLINICAL RELEVANCE: The use of chloroquine or hydroxychloroquine can lead to both acute and chronic changes to both retinal structure and function. BACKGROUND: Chloroquine (CQ) and hydroxychloroquine (HCQ) have the potential for retina toxicity. The acute impact of short-term drug exposure (2-4 weeks) on in vivo retinal structure and function and assess whether short wavelength light exposure further exacerbates any structural and functional changes was assessed in a murine model. METHODS: Adult C57BL/6 J mice received intraperitoneal injection of vehicle or hydroxychloroquine (10 mg/kg) 3 times per week for 2 or 4 weeks, or chloroquine for 4 weeks (10 mg/kg). Over this period, animals were exposed to room light (8 hours) or short-wavelength light 4 hours per day (4 hours of normal room light) for 5 days each week. Retinal changes were assessed using electroretinography (ERG), in vivo optical coherence tomography (OCT) imaging. RESULTS: Short-term low-dose HCQ and CQ treatment led to RPE thickening and elongation of photoreceptors. These structural changes were associated with a no dysfunction in the case of HCQ treatments and widespread functional changes (photoreceptor sensitivity, bipolar cell amplitude and oscillatory potential amplitude) in the case of CQ treatment. Exposure to low intensity short-wavelength light does not appear to alter the effect of HCQ or CQ. CONCLUSIONS: HCQ and CQ treatment has acute effects on both retinal structure and function, effects that were not exacerbated by short wavelength light exposure. Whether chronic short wavelength light exposure exacerbates these changes require further study.
  • Item
    Thumbnail Image
    The Effect of Aging on Retinal Function and Retinal Ganglion Cell Morphology Following Intraocular Pressure Elevation
    Lee, PY ; Zhao, D ; Wong, VHY ; Chrysostomou, V ; Crowston, JG ; Bui, BV (FRONTIERS MEDIA SA, 2022-05-12)
    Aging and elevated intraocular pressure (IOP) are two major risk factors for glaucomatous optic neuropathy; a condition characterized by the selective, progressive injury, and subsequent loss of retinal ganglion cells (RGCs). We examined how age modified the capacity for RGCs to functionally recover following a reproducible IOP elevation (50 mmHg for 30 min). We found that RGC functional recovery (measured using electroretinography) was complete by 7 days in 3-month-old mice but was delayed in 12-month-old mice until 14 days. At the 7-day recovery endpoint when RGC function had recovered in young but not older eyes, we examined RGC structural responses to IOP-related stress by analyzing RGC dendritic morphology. ON-RGC cell volume was attenuated following IOP elevation in both young and older mice. We also found that following IOP elevation OFF-RGC dendritic morphology became less complex per cell volume in young mice, an effect that was not observed in older eyes. Our data suggest that adaptations in OFF-RGCs in young eyes were associated with better functional recovery 7 days after IOP elevation. Loss of RGC cellular adaptations may account for delayed functional recovery in older eyes.
  • Item
    Thumbnail Image
    Utility of Self-Destructing CRISPR/Cas Constructs for Targeted Gene Editing in the Retina
    Li, F ; Hung, SSC ; Mohd Khalid, MKN ; Wang, J-H ; Chrysostomou, V ; Wong, VHY ; Singh, V ; Wing, K ; Tu, L ; Bender, JA ; Pebay, A ; King, AE ; Cook, AL ; Wong, RCB ; Bui, BV ; Hewitt, AW ; Liu, G-S (MARY ANN LIEBERT, INC, 2019-11-01)
    Safe delivery of CRISPR/Cas endonucleases remains one of the major barriers to the widespread application of in vivo genome editing. We previously reported the utility of adeno-associated virus (AAV)-mediated CRISPR/Cas genome editing in the retina; however, with this type of viral delivery system, active endonucleases will remain in the retina for an extended period, making genotoxicity a significant consideration in clinical applications. To address this issue, we have designed a self-destructing "kamikaze" CRISPR/Cas system that disrupts the Cas enzyme itself following expression. Four guide RNAs (sgRNAs) were initially designed to target Streptococcus pyogenes Cas9 (SpCas9) and after in situ validation, the selected sgRNAs were cloned into a dual AAV vector. One construct was used to deliver SpCas9 and the other delivered sgRNAs directed against SpCas9 and the target locus (yellow fluorescent protein [YFP]), in the presence of mCherry. Both constructs were packaged into AAV2 vectors and intravitreally administered in C57BL/6 and Thy1-YFP transgenic mice. After 8 weeks, the expression of SpCas9 and the efficacy of YFP gene disruption were quantified. A reduction of SpCas9 mRNA was found in retinas treated with AAV2-mediated YFP/SpCas9 targeting CRISPR/Cas compared with those treated with YFP targeting CRISPR/Cas alone. We also show that AAV2-mediated delivery of YFP/SpCas9 targeting CRISPR/Cas significantly reduced the number of YFP fluorescent cells among mCherry-expressing cells (∼85.5% reduction compared with LacZ/SpCas9 targeting CRISPR/Cas) in the transfected retina of Thy1-YFP transgenic mice. In conclusion, our data suggest that a self-destructive "kamikaze" CRISPR/Cas system can be used as a robust tool for genome editing in the retina, without compromising on-target efficiency.
  • Item
    No Preview Available
    The effect of ageing on the recovery of retinal function and structure following intraocular pressure elevation in mice
    Lee, PY ; He, Z ; Wong, VHY ; Crowston, JG ; Bui, BV (Association for Research in Vision and Ophthalmology, 2019-07-01)
    Purpose : To investigate the effect of ageing on the capacity of the eye to cope with acute intraocular pressure (IOP) elevation in mice Methods : IOP was elevated to 50 mmHg for 30 minutes in anaesthetised (ketamine/xylazine) 3- and 12-month old (3mo and 12mo) C57Bl/6 mice by infusing Hanks’ Balance Salt Solution through a glass micropipette (~50μm tip) inserted into the anterior chamber of one randomly selected eye. The contralateral eye served as an untreated control. Retinal function was assessed using electroretinogram to provide an index of the health of the major cell classes in the eye. Retinal structure was assessed using optical coherence tomography (OCT) which returns thickness for a range of retinal layers. Responses were collected one week prior to and at 3 (n=13 3mo, n=11 12mo), 7 (n=13 3mo, n=10 12mo), 14 (n=10 3mo, n=11 12mo) or 28 (n=11 3mo, n=11 12mo) days after IOP elevation. Responses in the high IOP eye were expressed relative (%) to their contralateral control eye (mean±SEM). As retinal ganglion cell (RGC) responses are influenced by input from the outer retina, we expressed the functional recovery of RGC as the % difference between relative RGC (output cells) and photoreceptor (input cells) function. The effect of age on RGC functional recovery and retinal structural changes at the various recovery time points was analysed using two-way ANOVA. Results : In 3-month old eyes, 3 days after IOP elevation, RGC function was -37.3±7.0% worse than expected from photoreceptoral input. By 7 days after IOP elevation, RGC responses were similar to photoreceptor responses (-5.7±7.2%) and remained so at 14 (-9.7±6.0%) and 28 (15.6±16.4%) days of recovery. In contrast, 12-month old eyes showed slower recovery. RGC responses were worse than expected from photoreceptoral responses at 3 (-58.1±6.1%) and 7 (-34.8±10.5%) days. Only at 14 (-9.4±10.0%) and 28 (1.9±13.1%) days had RGC responses returned to levels comparable with photoreceptoral responses in 12-month old eyes. Two-way ANOVA confirmed a significant age effect in the functional recovery (p<0.05). There was, however, no significant differences in retinal layers measured using OCT with age. Conclusions : RGC function was more affected by acute IOP elevation than photoreceptoral responses. Ageing slowed down the functional recovery of RGC following an acute IOP stressor but appears to have little effect on retinal structure.
  • Item
    No Preview Available
    A tractable preclinical model of optic nerve demyelination
    van Wijngaarden, P ; Paul, JP ; Wong, VHY ; Bui, BV ; Merson, TD (Association for Research in Vision and Ophthalmology, 2019-07-01)
    Purpose : Progress in the development of therapies to enhance remyelination in demyelinating diseases has been hampered by a lack of appropriate preclinical models - functional measures are often lacking or variable. We sought to develop a tractable and reproducible model of optic nerve demyelination with precise structural and functional measures. Methods : Oligodendrocytes of MBP-DTR 100a transgenic mice express diphtheria toxin receptor (DTR) and systemic diphtheria toxin (DT) administration induces diffuse demyelination of the central nervous system. In the present study we used retrobulbar DT injection to induce focal demyelination of the optic nerves of 3-month-old MBP-DTR 100a mice. Dose optimisation: anaesthetised mice underwent unilateral retrobulbar DT injection with 5, 10 or 15ng/kg DT (n=7 per dose, 1 µL per injection). Tissues were harvested three weeks after injection. Time-course study: Following baseline visual evoked potential (VEP) recording, electroretinogram (ERG) and optical coherence tomography (OCT), mice underwent retrobulbar DT injection with 15ng/kg DT or 1µL PBS. Follow-up measurements were taken at 2 (n=5 DT, 5 PBS), 4 (n=6 DT, 6 PBS), 8 (n=9 DT, 9 PBS) or 12-weeks (n=7 DT, 7 PBS). Animals were culled at each timepoint for tissue analysis. Tissue analysis: Optic nerves were resin embedded, sectioned (1µm) and stained with toluidine blue for myelin analysis, or cryosectioned for immunofluorescence, and retinas were flat-mounted for ganglion cell counts. Results : 3 weeks after injection with 15ng/kg DT, optic nerves showed colocalisation of activated caspase 3 & olig2, consistent with the apoptosis of oligodendroglia. Gliosis and axonal degeneration were evident.
  • Item
    Thumbnail Image
    Gene Therapy Intervention in Neovascular Eye Disease: A Recent Update
    Lin, F-L ; Wang, P-Y ; Chuang, Y-F ; Wang, J-H ; Wong, VHY ; Bui, B ; Liu, G-S (CELL PRESS, 2020-10-07)
    Aberrant growth of blood vessels (neovascularization) is a key feature of severe eye diseases that can cause legal blindness, including neovascular age-related macular degeneration (nAMD) and diabetic retinopathy (DR). The development of anti-vascular endothelial growth factor (VEGF) agents has revolutionized the treatment of ocular neovascularization. Novel proangiogenic targets, such as angiopoietin and platelet-derived growth factor (PDGF), are under development for patients who respond poorly to anti-VEGF therapy and to reduce adverse effects from long-term VEGF inhibition. A rapidly advancing area is gene therapy, which may provide significant therapeutic benefits. Viral vector-mediated transgene delivery provides the potential for continuous production of antiangiogenic proteins, which would avoid the need for repeated anti-VEGF injections. Gene silencing with RNA interference to target ocular angiogenesis has been investigated in clinical trials. Proof-of-concept gene therapy studies using gene-editing tools such as CRISPR-Cas have already been shown to be effective in suppressing neovascularization in animal models, highlighting the therapeutic potential of the system for treatment of aberrant ocular angiogenesis. This review provides updates on the development of anti-VEGF agents and novel antiangiogenic targets. We also summarize current gene therapy strategies already in clinical trials and those with the latest approaches utilizing CRISPR-Cas gene editing against aberrant ocular neovascularization.
  • Item
    Thumbnail Image
    A drug-tunable Flt23k gene therapy for controlled intervention in retinal neovascularization
    Chen, J ; Lin, F-L ; Leung, JYK ; Tu, L ; Wang, J-H ; Chuang, Y-F ; Li, F ; Shen, H-H ; Dusting, GJ ; Wong, VHY ; Lisowski, L ; Hewitt, AW ; Bui, BV ; Zhong, J ; Liu, G-S (SPRINGER, 2021-02)
    Gene therapies that chronically suppress vascular endothelial growth factor (VEGF) represent a new approach for managing retinal vascular leakage and neovascularization. However, constitutive suppression of VEGF in the eye may have deleterious side effects. Here, we developed a novel strategy to introduce Flt23k, a decoy receptor that binds intracellular VEGF, fused to the destabilizing domain (DD) of Escherichia coli dihydrofolate reductase (DHFR) into the retina. The expressed DHFR(DD)-Flt23k fusion protein is degraded unless "switched on" by administering a stabilizer; in this case, the antibiotic trimethoprim (TMP). Cells transfected with the DHFR(DD)-Flt23k construct expressed the fusion protein at levels correlated with the TMP dose. Stabilization of the DHFR(DD)-Flt23k fusion protein by TMP was able to inhibit intracellular VEGF in hypoxic cells. Intravitreal injection of self-complementary adeno-associated viral vector (scAAV)-DHFR(DD)-Flt23k and subsequent administration of TMP resulted in tunable suppression of ischemia-induced retinal neovascularization in a rat model of oxygen-induced retinopathy (OIR). Hence, our study suggests a promising novel approach for the treatment of retinal neovascularization. Schematic diagram of the tunable system utilizing the DHFR(DD)-Flt23k approach to reduce VEGF secretion. a The schematic shows normal VEGF secretion. b Without the ligand TMP, the DHFR(DD)-Flt23k protein is destabilized and degraded by the proteasome. c In the presence of the ligand TMP, DHFR(DD)-Flt23k is stabilized and sequestered in the ER, thereby conditionally inhibiting VEGF. Green lines indicate the intracellular and extracellular distributions of VEGF. Blue lines indicate proteasomal degradation of the DHFR(DD)-Flt23k protein. Orange lines indicate the uptake of cell-permeable TMP. TMP, trimethoprim; VEGF, vascular endothelial growth factor; ER, endoplasmic reticulum.
  • Item
    Thumbnail Image
    Targeted delivery of LM22A-4 by cubosomes protects retinal ganglion cells in an experimental glaucoma model
    Ding, Y ; Chow, SH ; Chen, J ; Le Brun, AP ; Wu, C-M ; Duff, AP ; Wang, Y ; Wong, VHY ; Zhao, D ; Lee, T-H ; Conn, CE ; Hsu, H-Y ; Bui, B ; Liu, G-S ; Shen, H-H (SSRN, 2021-04-29)
    Glaucoma, a major cause of irreversible blindness worldwide, is associated with elevated intraocular pressure (IOP) and progressive loss of retinal ganglion cells (RGCs) that undergo apoptosis. A mechanism for RGCs injury involves impairment of neurotrophic support and exogenous supply of neurotrophic factors has been shown to be beneficial. However, neurotrophic factors can have widespread effects on neuronal tissues, thus targeting neurotrophic support to injured neurons may be a better neuroprotective strategy. In this study, we have encapsulated LM22A-4, a small neurotrophic factor mimetic, into Annexin V-conjugated cubosomes (L4-ACs) for targeted delivery to injured RGCs in a model of glaucoma, which is induced by acute IOP elevation. We have tested cubosomes formulations that encapsulate from 9% to 33% LM22A-4. Our data indicated that cubosomes encapsulating 9% and 17% LM22A-4 exhibited a mixture of Pn3m/Im3m cubic phase, whereas 23% and 33% showed a pure Im3m cubic phase. We found that 17% L4-ACs with Pn3m/Im3m symmetries showed better in-situ and in-vitro lipid membrane interactions than the 23% and 33% L4-ACs with Im3m symmetry. In vivo experiments showed that 17% L4-ACs targeted the posterior retina and the optic nerve head, which prevented RGCs loss in a mouse model of acute IOP elevation. These results provide evidence that cubosomesbased LM22A-4 delivery may be a useful targeted approached to prevent the progression of RGCs loss in glaucoma.