Ophthalmology (Eye & Ear Hospital) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    Thumbnail Image
    AAV-Mediated CRISPR/Cas Gene Editing of Retinal Cells In Vivo
    Hung, SSC ; Chrysostomou, V ; Li, F ; Lim, JKH ; Wang, J-H ; Powell, JE ; Tu, L ; Daniszewski, M ; Lo, C ; Wong, RC ; Crowston, JG ; Pebay, A ; King, AE ; Bui, BV ; Liu, G-S ; Hewitt, AW (ASSOC RESEARCH VISION OPHTHALMOLOGY INC, 2016-06)
    PURPOSE: Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) has recently been adapted to enable efficient editing of the mammalian genome, opening novel avenues for therapeutic intervention of inherited diseases. In seeking to disrupt yellow fluorescent protein (YFP) in a Thy1-YFP transgenic mouse, we assessed the feasibility of utilizing the adeno-associated virus 2 (AAV2) to deliver CRISPR/Cas for gene modification of retinal cells in vivo. METHODS: Single guide RNA (sgRNA) plasmids were designed to target YFP, and after in vitro validation, selected guides were cloned into a dual AAV system. One AAV2 construct was used to deliver Streptococcus pyogenes Cas9 (SpCas9), and the other delivered sgRNA against YFP or LacZ (control) in the presence of mCherry. Five weeks after intravitreal injection, retinal function was determined using electroretinography, and CRISPR/Cas-mediated gene modifications were quantified in retinal flat mounts. RESULTS: Adeno-associated virus 2-mediated in vivo delivery of SpCas9 with sgRNA targeting YFP significantly reduced the number of YFP fluorescent cells of the inner retina of our transgenic mouse model. Overall, we found an 84.0% (95% confidence interval [CI]: 81.8-86.9) reduction of YFP-positive cells in YFP-sgRNA-infected retinal cells compared to eyes treated with LacZ-sgRNA. Electroretinography profiling found no significant alteration in retinal function following AAV2-mediated delivery of CRISPR/Cas components compared to contralateral untreated eyes. CONCLUSIONS: Thy1-YFP transgenic mice were used as a rapid quantifiable means to assess the efficacy of CRISPR/Cas-based retinal gene modification in vivo. We demonstrate that genomic modification of cells in the adult retina can be readily achieved by viral-mediated delivery of CRISPR/Cas.
  • Item
    Thumbnail Image
    Utility of Self-Destructing CRISPR/Cas Constructs for Targeted Gene Editing in the Retina
    Li, F ; Hung, SSC ; Mohd Khalid, MKN ; Wang, J-H ; Chrysostomou, V ; Wong, VHY ; Singh, V ; Wing, K ; Tu, L ; Bender, JA ; Pebay, A ; King, AE ; Cook, AL ; Wong, RCB ; Bui, BV ; Hewitt, AW ; Liu, G-S (MARY ANN LIEBERT, INC, 2019-11-01)
    Safe delivery of CRISPR/Cas endonucleases remains one of the major barriers to the widespread application of in vivo genome editing. We previously reported the utility of adeno-associated virus (AAV)-mediated CRISPR/Cas genome editing in the retina; however, with this type of viral delivery system, active endonucleases will remain in the retina for an extended period, making genotoxicity a significant consideration in clinical applications. To address this issue, we have designed a self-destructing "kamikaze" CRISPR/Cas system that disrupts the Cas enzyme itself following expression. Four guide RNAs (sgRNAs) were initially designed to target Streptococcus pyogenes Cas9 (SpCas9) and after in situ validation, the selected sgRNAs were cloned into a dual AAV vector. One construct was used to deliver SpCas9 and the other delivered sgRNAs directed against SpCas9 and the target locus (yellow fluorescent protein [YFP]), in the presence of mCherry. Both constructs were packaged into AAV2 vectors and intravitreally administered in C57BL/6 and Thy1-YFP transgenic mice. After 8 weeks, the expression of SpCas9 and the efficacy of YFP gene disruption were quantified. A reduction of SpCas9 mRNA was found in retinas treated with AAV2-mediated YFP/SpCas9 targeting CRISPR/Cas compared with those treated with YFP targeting CRISPR/Cas alone. We also show that AAV2-mediated delivery of YFP/SpCas9 targeting CRISPR/Cas significantly reduced the number of YFP fluorescent cells among mCherry-expressing cells (∼85.5% reduction compared with LacZ/SpCas9 targeting CRISPR/Cas) in the transfected retina of Thy1-YFP transgenic mice. In conclusion, our data suggest that a self-destructive "kamikaze" CRISPR/Cas system can be used as a robust tool for genome editing in the retina, without compromising on-target efficiency.
  • Item
    Thumbnail Image
    Longitudinal expression profiling of CD4+and CD8+cells in patients with active to quiescent giant cell arteritis
    De Smit, E ; Lukowski, SW ; Anderson, L ; Senabouth, A ; Dauyey, K ; Song, S ; Wyse, B ; Wheeler, L ; Chen, CY ; Cao, K ; Ten Yuen, AW ; Shuey, N ; Clarke, L ; Sanchez, IL ; Hung, SSC ; Pebay, A ; Mackey, DA ; Brown, MA ; Hewitt, AW ; Powell, JE (BMC, 2018-07-23)
    BACKGROUND: Giant cell arteritis (GCA) is the most common form of vasculitis affecting elderly people. It is one of the few true ophthalmic emergencies but symptoms and signs are variable thereby making it a challenging disease to diagnose. A temporal artery biopsy is the gold standard to confirm GCA, but there are currently no specific biochemical markers to aid diagnosis. We aimed to identify a less invasive method to confirm the diagnosis of GCA, as well as to ascertain clinically relevant predictive biomarkers by studying the transcriptome of purified peripheral CD4+ and CD8+ T lymphocytes in patients with GCA. METHODS: We recruited 16 patients with histological evidence of GCA at the Royal Victorian Eye and Ear Hospital, Melbourne, Australia, and aimed to collect blood samples at six time points: acute phase, 2-3 weeks, 6-8 weeks, 3 months, 6 months and 12 months after clinical diagnosis. CD4+ and CD8+ T-cells were positively selected at each time point through magnetic-assisted cell sorting. RNA was extracted from all 195 collected samples for subsequent RNA sequencing. The expression profiles of patients were compared to those of 16 age-matched controls. RESULTS: Over the 12-month study period, polynomial modelling analyses identified 179 and 4 statistically significant transcripts with altered expression profiles (FDR < 0.05) between cases and controls in CD4+ and CD8+ populations, respectively. In CD8+ cells, two transcripts remained differentially expressed after 12 months; SGTB, associated with neuronal apoptosis, and FCGR3A, associatied with Takayasu arteritis. We detected genes that correlate with both symptoms and biochemical markers used for predicting long-term prognosis. 15 genes were shared across 3 phenotypes in CD4 and 16 across CD8 cells. In CD8, IL32 was common to 5 phenotypes including Polymyalgia Rheumatica, bilateral blindness and death within 12 months. CONCLUSIONS: This is the first longitudinal gene expression study undertaken to identify robust transcriptomic biomarkers of GCA. Our results show cell type-specific transcript expression profiles, novel gene-phenotype associations, and uncover important biological pathways for this disease. In the acute phase, the gene-phenotype relationships we have identified could provide insight to potential disease severity and as such guide in initiating appropriate patient management.
  • Item
    Thumbnail Image
    PSEN1ΔE9, APPswe, and APOE4 Confer Disparate Phenotypes in Human iPSC-Derived Microglia
    Konttinen, H ; Cabral-da-Silva, MEC ; Ohtonen, S ; Wojciechowski, S ; Shakirzyanova, A ; Caligola, S ; Giugno, R ; Ishchenko, Y ; Hernandez, D ; Fazaludeen, MF ; Eamen, S ; Budia, MG ; Fagerlund, I ; Scoyni, F ; Korhonen, P ; Huber, N ; Haapasalo, A ; Hewitt, AW ; Vickers, J ; Smith, GC ; Oksanen, M ; Graff, C ; Kanninen, KM ; Lehtonen, S ; Propson, N ; Schwartz, MP ; Pebay, A ; Koistinaho, J ; Ooi, L ; Malm, T (CELL PRESS, 2019-10-08)
    Here we elucidate the effect of Alzheimer disease (AD)-predisposing genetic backgrounds, APOE4, PSEN1ΔE9, and APPswe, on functionality of human microglia-like cells (iMGLs). We present a physiologically relevant high-yield protocol for producing iMGLs from induced pluripotent stem cells. Differentiation is directed with small molecules through primitive erythromyeloid progenitors to re-create microglial ontogeny from yolk sac. The iMGLs express microglial signature genes and respond to ADP with intracellular Ca2+ release distinguishing them from macrophages. Using 16 iPSC lines from healthy donors, AD patients and isogenic controls, we reveal that the APOE4 genotype has a profound impact on several aspects of microglial functionality, whereas PSEN1ΔE9 and APPswe mutations trigger minor alterations. The APOE4 genotype impairs phagocytosis, migration, and metabolic activity of iMGLs but exacerbates their cytokine secretion. This indicates that APOE4 iMGLs are fundamentally unable to mount normal microglial functionality in AD.
  • Item
    Thumbnail Image
    Single-Cell Profiling Identifies Key Pathways Expressed by iPSCs Cultured in Different Commercial Media
    Daniszewski, M ; Quan, N ; Chy, HS ; Singh, V ; Crombie, DE ; Kulkarni, T ; Liang, HH ; Sivakumaran, P ; Lidgerwood, GE ; Hernandez, D ; Conquest, A ; Rooney, LA ; Chevalier, S ; Andersen, SB ; Senabouth, A ; Vickers, JC ; Mackey, DA ; Craig, JE ; Laslett, AL ; Hewitt, AW ; Powell, JE ; Pebay, A (CELL PRESS, 2018-09-28)
    We assessed the pluripotency of human induced pluripotent stem cells (iPSCs) maintained on an automated platform using StemFlex and TeSR-E8 media. Analysis of transcriptome of single cells revealed similar expression of core pluripotency genes, as well as genes associated with naive and primed states of pluripotency. Analysis of individual cells from four samples consisting of two different iPSC lines each grown in the two culture media revealed a shared subpopulation structure with three main subpopulations different in pluripotency states. By implementing a machine learning approach, we estimated that most cells within each subpopulation are very similar between all four samples. The single-cell RNA sequencing analysis of iPSC lines grown in both media reports the molecular signature in StemFlex medium and how it compares to that observed in the TeSR-E8 medium.
  • Item
    Thumbnail Image
    Data Descriptor: Transcriptome sequencing and molecular markers discovery in the gonads of Portunus sanguinolentus
    Zhang, Y ; Miao, G ; Wu, Q ; Lin, F ; You, C ; Wang, S ; Aweya, JJ ; Ma, H (NATURE PUBLISHING GROUP, 2018-07-10)
    Crab culture has gained prominence in the last decade due to the large global market demand for live crabs and crab products. Portunus sanguinolentus is one of the economically important crab species in the Indo-Pacific region, with distinct differences in growth and size between male and female crabs, thus, leading to huge difference in their market values. The culture of P. sanguinolentus is still in its infancy, with crab supplies heavily dependent on wild catch. In order to unravel the molecular differences between male and female crabs, we generated a comprehensive transcriptomic dataset for P. sanguinolentus by sequencing the gonads of both sexes using the Illumina Hiseq 2500 system. Transcriptomes were assembled using Trinity de novo assembly followed by annotation. This transcriptomic data set for P. sanguinolentus would serve as an important reference data for genomic and genetic studies in this crab and related species.
  • Item
    Thumbnail Image
    Defined Medium Conditions for the Induction and Expansion of Human Pluripotent Stem Cell-Derived Retinal Pigment Epithelium
    Lidgerwood, GE ; Lim, SY ; Crombie, DE ; Ali, R ; Gill, KP ; Hernandez, D ; Kie, J ; Conquest, A ; Waugh, HS ; Wong, RCB ; Liang, HH ; Hewitt, AW ; Davidson, KC ; Pebay, A (SPRINGER, 2016-04)
    We demonstrate that a combination of Noggin, Dickkopf-1, Insulin Growth Factor 1 and basic Fibroblast Growth Factor, promotes the differentiation of human pluripotent stem cells into retinal pigment epithelium (RPE) cells. We describe an efficient one-step approach that allows the generation of RPE cells from both human embryonic stem cells and human induced pluripotent stem cells within 40-60 days without the need for manual excision, floating aggregates or imbedded cysts. Compared to methods that rely on spontaneous differentiation, our protocol results in faster differentiation into RPE cells. This pro-retinal culture medium promotes the growth of functional RPE cells that exhibit key characteristics of the RPE including pigmentation, polygonal morphology, expression of mature RPE markers, electrophysiological membrane potential and the ability to phagocytose photoreceptor outer segments. This protocol can be adapted for feeder, feeder-free and serum-free conditions. This method thereby provides a rapid and simplified production of RPE cells for downstream applications such as disease modelling and drug screening.
  • Item
    Thumbnail Image
    Enriched retinal ganglion cells derived from human embryonic stem cells
    Gill, KP ; Hung, SSC ; Sharov, A ; Lo, CY ; Needham, K ; Lidgerwood, GE ; Jackson, S ; Crombie, DE ; Nayagam, BA ; Cook, AL ; Hewitt, AW ; Pebay, A ; Wong, RCB (NATURE PORTFOLIO, 2016-08-10)
    Optic neuropathies are characterised by a loss of retinal ganglion cells (RGCs) that lead to vision impairment. Development of cell therapy requires a better understanding of the signals that direct stem cells into RGCs. Human embryonic stem cells (hESCs) represent an unlimited cellular source for generation of human RGCs in vitro. In this study, we present a 45-day protocol that utilises magnetic activated cell sorting to generate enriched population of RGCs via stepwise retinal differentiation using hESCs. We performed an extensive characterization of these stem cell-derived RGCs by examining the gene and protein expressions of a panel of neural/RGC markers. Furthermore, whole transcriptome analysis demonstrated similarity of the hESC-derived RGCs to human adult RGCs. The enriched hESC-RGCs possess long axons, functional electrophysiological profiles and axonal transport of mitochondria, suggestive of maturity. In summary, this RGC differentiation protocol can generate an enriched population of functional RGCs from hESCs, allowing future studies on disease modeling of optic neuropathies and development of cell therapies.
  • Item
    Thumbnail Image
    Study of mitochondrial respiratory defects on reprogramming to human induced pluripotent stem cells
    Hung, SSC ; Van Bergen, NJ ; Jackson, S ; Liang, H ; Mackey, DA ; Hernandez, D ; Lim, SY ; Hewitt, AW ; Trounce, I ; Pebay, A ; Wong, RCB (IMPACT JOURNALS LLC, 2016-05)
    Reprogramming of somatic cells into a pluripotent state is known to be accompanied by extensive restructuring of mitochondria and switch in metabolic requirements. Here we utilized Leber's hereditary optic neuropathy (LHON) as a mitochondrial disease model to study the effects of homoplasmic mtDNA mutations and subsequent oxidative phosphorylation (OXPHOS) defects in reprogramming. We obtained fibroblasts from a total of 6 LHON patients and control subjects, and showed a significant defect in complex I respiration in LHON fibroblasts by high-resolution respiratory analysis. Using episomal vector reprogramming, our results indicated that human induced pluripotent stem cell (hiPSC) generation is feasible in LHON fibroblasts. In particular, LHON-specific OXPHOS defects in fibroblasts only caused a mild reduction and did not significantly affect reprogramming efficiency, suggesting that hiPSC reprogramming can tolerate a certain degree of OXPHOS defects. Our results highlighted the induction of genes involved in mitochondrial biogenesis (TFAM, NRF1), mitochondrial fusion (MFN1, MFN2) and glycine production (GCAT) during reprogramming. However, LHON-associated OXPHOS defects did not alter the kinetics or expression levels of these genes during reprogramming. Together, our study provides new insights into the effects of mtDNA mutation and OXPHOS defects in reprogramming and genes associated with various aspects of mitochondrial biology.
  • Item
    Thumbnail Image
    Mitochondrial replacement in an iPSC model of Leber's hereditary optic neuropathy
    Wong, RCB ; Lim, SY ; Hung, SSC ; Jackson, S ; Khan, S ; Van Bergen, NJ ; De Smit, E ; Liang, HH ; Kearns, LS ; Clarke, L ; Mackey, DA ; Hewitt, AW ; Trounce, IA ; Pebay, A (IMPACT JOURNALS LLC, 2017-04)
    Cybrid technology was used to replace Leber hereditary optic neuropathy (LHON) causing mitochondrial DNA (mtDNA) mutations from patient-specific fibroblasts with wildtype mtDNA, and mutation-free induced pluripotent stem cells (iPSCs) were generated subsequently. Retinal ganglion cell (RGC) differentiation demonstrates increased cell death in LHON-RGCs and can be rescued in cybrid corrected RGCs.